在區間(a, b)上,f(x)和g(x)都可導、g′(x) ≠ 0、limx → a+f(x) = limx → a+g(x) = 0,
$$\lim_{x \rightarrow a^{+}}\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} $$
證明:設f(a)=g(a)=0,則有limx → a+f(x) = f(a) = 0、limx → a+g(x) = g(a) = 0,所以這個定義使得f(x)和g(x)在[a, b)上連續。取任意的x ∈ (a, b),由於f(x)和g(x)在[a, x]上滿足使用柯西中值定理的條件,所以有
$$\frac{f(x) - f(a)}{g\left( x \right) - g\left( a \right)} = \frac{f'(c)}{g^{'}\left( c \right)}$$
因為f(a)=g(a)=0,所以
$$\frac{f(x)}{g\left( x \right)} = \frac{f'(c)}{g^{'}\left( c \right)}$$
x → a+時,因為c在(a, x)上,所以c → a+,所以
$$\lim_{x \rightarrow a^{+}}\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \lim_{c \rightarrow a^{+}}\frac{f^{'}\left( c \right)}{g^{'}\left( c \right)} = \lim_{x \rightarrow a^{+}}\frac{f^{'}\left( x \right)}{g^{'}\left( x \right)} $$