常用傅里葉變換對($t \rightarrow \omega$)


1. 單邊指數函數

\[f(t)=\left \{ \begin{aligned} & e^{-at}, & t \ge 0\\ & 0 , & t < 0 \end{aligned} \right. \]

其中\(a\)是實數。於是其傅里葉變換為:

\[\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt \\ &= \int_{0}^{\infty}e^{-at}e^{-j\omega t}dt \\ &= \int_{0}^{\infty}e^{-(a+j\omega)t}dt \\ &= [-\frac{e^{-(a+j\omega)t}}{a+j\omega}]_{0}^{\infty} \\ &= 0 - (-\frac{1}{a+j\omega}) = \frac{1}{a+j\omega} \end{aligned} \]

從而可以得到:

\[\left \{ \begin{aligned} F(\omega) &= \frac{1}{a+j\omega} \\ |F(\omega)| &=\frac{1}{\sqrt{a^{2}+\omega^{2}}}\\ \varphi(\omega) &= -\text{arctan}(\frac{\omega}{a}) \end{aligned} \right. \tag{1} \]

2. 雙邊指數函數

\[f(t)=e^{-a|t|}\quad (-\infty<t<\infty) \]

傅里葉變換為:

\[\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty}e^{-a|t|}e^{-j\omega t}dt \\ &= \int_{-\infty}^{0}e^{at}e^{-j\omega t}dt+\int_{0}^{\infty}e^{-at}e^{-j\omega t}dt \\ &= \int_{-\infty}^{0}e^{(a-j\omega)t}dt+\int_{0}^{\infty}e^{-(a+j\omega)t}dt \\ &= [\frac{e^{(a-j\omega)t}}{a-j\omega}]_{-\infty}^{0}+\frac{1}{a+j\omega} \\ &= \frac{1}{a-j\omega} + \frac{1}{a+j\omega} = \frac{2a}{a^{2}+\omega^{2}} \end{aligned} \]

從而可以得到:

\[\left \{ \begin{aligned} F(\omega) &= \frac{1}{a^{2}+\omega^{2}} \\ |F(\omega)| &=\frac{1}{a^{2}+\omega^{2}}\\ \varphi(\omega) &= 0 \end{aligned} \right. \tag{2} \]

3. 矩形脈沖信號

矩形脈沖信號的表達式為:

\[f(t)=E[u(t+\frac{\tau}{2})-u(t-\frac{\tau}{2})] \]

其中\(E\)為脈沖幅度,\(\tau\)為脈沖寬度。其傅里葉變換為:

\[\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty}f(t)e^{i\omega t}=\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}Ee^{-j\omega t}=[-\frac{Ee^{-j\omega t}}{j\omega}]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}\\ &= -\frac{E}{j\omega}[e^{-j\omega \frac{\tau}{2}}-e^{j\omega\frac{\tau}{2}}] =-\frac{E}{j\omega}[(cos\frac{\omega \tau}{2}-jsin\frac{\omega\tau}{2})-(cos\frac{\omega \tau}{2}+jsin\frac{\omega\tau}{2})] \\ &= -\frac{E}{j\omega}[-2jsin\frac{\omega\tau}{2}]=\frac{2E}{\omega}sin(\frac{\omega\tau}{2}) \end{aligned} \]

定義抽樣信號\(Sa(t)=\frac{sint}{t}\),所以上式可以寫為:

\[F(\omega)=E\tau[\frac{sin(\frac{\omega\tau}{2})}{\frac{\omega\tau}{2}}]=E\tau Sa(\frac{\omega\tau}{2}) \]

從而得到

\[|F(\omega)| = E\tau \left|Sa(\frac{\omega\tau}{2})\right| \tag{3} \]

矩形脈沖信號的頻譜以\(Sa(\frac{\omega\tau}{2})\)的規律變化,分布在無限寬的頻率范圍上,但是其主要信號能量處於\(f=0\sim\frac{1}{\tau}\)的范圍內。因而,通常認為這種信號的帶寬為:

\[B\approx\frac{1}{\tau} \]

4. 符號函數

符號函數(或稱正負號函數)以符號sgn記,其表達式為:

\[f(t) = \text{sgn}(t)= \left \{ \begin{aligned} &+1\quad &(t>0) \\ &0 \quad &(t=0) \\ &-1 \quad &(t<0) \end{aligned} \right. \]

顯然,這種信號不滿足絕對可積條件,但是它卻存在傅里葉變換(絕對可積是傅里葉變換存在的充分條件而非必要條件)。直接對該函數進行傅里葉變換:

\[\begin{aligned} F(\omega)&=\int_{-\infty}^{\infty}sng(t)e^{-j\omega t}=\int_{-\infty}^{0_{-}}-e^{-j\omega t}dt+\int_{0_{+}}^{\infty}e^{-j\omega t}dt \\ &=\frac{1}{j\omega}[\lim_{t\to0_{-}}e^{-j\omega t}-\lim_{t\to-\infty}e^{-j\omega t}]-\frac{1}{j\omega}[\lim_{t\to\infty}e^{-j\omega t}-\lim_{t\to0_{+}}e^{-j\omega t}] \end{aligned} \]

式中存在無窮項,不能收斂。所以無法直接求取。考慮到:

\[\lim_{a\to0}e^{-a|t|}=1 \]

我們將其與\(\text{sgn}(t)\)相乘,然后將乘積\(f_{1}(t)\)進行傅里葉變換,最后對結果取\(a\)趨近於0的極限即可得到符號函數的傅里葉變換。乘積信號的傅里葉變換為:

\[\begin{aligned} F_{1}(\omega)&=\int_{-\infty}^{\infty}f_{1}(t)e^{-j\omega t}dt=\int_{-\infty}^{0}(-e^{at})e^{-j\omega t}dt + \int_{0}^{\infty}e^{-at}e^{-j\omega t}dt \\ &=\int_{-\infty}^{0}(-e^{(a-j\omega)t})dt + \int_{0}^{\infty}e^{-at}e^{-j\omega t}dt \\ &=-[\frac{e^{(a-j\omega)t}}{a-j\omega}]_{-\infty}^{0} + \frac{1}{a+j\omega} \\ &= -[\frac{1}{a-j\omega}-0]+\frac{1}{a+j\omega}=\frac{-2j\omega}{a^{2}+\omega^{2}} \end{aligned} \]

從而符號函數\(sgn(t)\)的頻譜函數為:

\[\left \{ \begin{aligned} F(\omega)&=\lim_{a\to0}\frac{-2j\omega}{a^{2}+\omega^{2}}=\frac{2}{j\omega} \\ \left| F(\omega) \right| &= \frac{2}{|\omega|} \\ \varphi(\omega)&=\left \{ \begin{aligned} &-\frac{\pi}{2}\quad (\omega >0) \\ &+\frac{\pi}{2}\quad(\omega<0) \end{aligned}\right. \end{aligned} \right. \tag{4} \]

5. 升余弦函數

升余弦脈沖函數的表達式為:

\[f(t)=\frac{E}{2}[1+cos(\frac{\pi t}{\tau})]\quad(0 \le |t| \le \tau) \]

其傅里葉變換為:

\[\begin{aligned} F(\omega)&=\int_{-\tau}^{\tau}\frac{E}{2}[1+cos(\frac{\pi t}{\tau})]e^{-j\omega t}dt \\ &= \frac{E}{2}\int_{-\tau}^{\tau}e^{-j\omega t}dt+\frac{E}{2}[\int_{-\tau}^{\tau}\frac{1}{2}(e^{\frac{j\pi t}{\tau}}+e^{-\frac{j\pi t}{\tau}})e^{-j\omega t}dt] \\ &=E\tau Sa(\omega \tau)+\frac{E\tau}{2}Sa[(\omega-\frac{\pi}{\tau})\tau]+\frac{E\tau}{2}Sa[(\omega+\frac{\pi}{\tau})\tau] \end{aligned} \tag{5a} \]

顯然\(F(\omega)\)是由三項構成的,它們都是矩形脈沖的頻譜,只是有兩項沿頻率軸左、右平移了\(\omega=\frac{\pi}{\tau}\)。把上式化簡可以得到:

\[F(\omega)=\frac{Esin(\omega\tau)}{\omega[1-(\frac{\omega\tau}{\pi})^{2}]}=\frac{E\tau Sa(\omega\tau)}{1-(\frac{\omega\tau}{\pi})^{2}} \tag{5b} \]

升余弦脈沖信號的頻譜比矩形脈沖的頻譜更加集中。對於半幅度寬度為\(\tau\)的升余弦脈沖信號,它的絕大部分能量集中在\(\omega=0\sim\frac{2\pi}{\tau}\rightarrow f=0\sim\frac{1}{\tau}\)的范圍內。

6. 沖激函數

單位沖激函數\(\delta(t)\)的傅里葉變換為:

\[F(\omega)=\int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt=1 \tag{6a} \]

上述結果也可由矩形脈沖取極限得到,當脈寬\(\tau\)逐漸變窄時,其頻譜必然展寬。可以想象,若\(\tau\rightarrow0\),而\(E\tau=1\),這時矩形脈沖就變成了\(\delta(t)\),其相應的頻譜等於常數1。

單位沖激函數的頻譜等於常數,也就是說,在整個頻率范圍內頻譜時均勻分布的。顯然,在時域中變化異常劇烈的沖激函數包含幅度相等的所有頻率分量。因此,這種頻譜常稱為“均勻譜”或“白色譜”。

怎么樣的函數其頻譜為沖激函數呢?也就是求\(\delta(\omega)\)的傅里葉逆變換。

\[\mathscr{F}^{-1}[\delta(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\delta(\omega)e^{j\omega t}d\omega = \frac{1}{2\pi} \tag{6b} \]

此結果說明,直流信號的傅里葉變換是沖激函數。由\((6b)\)進一步可得:

\[\mathscr{F}(\frac{1}{2\pi})=\delta(\omega) \tag{6c} \]

\[\mathscr{F}(1)=2\pi\delta(\omega) \tag{6d} \]

7. 階躍函數

從波形容易看出階躍函數\(u(t)\)不滿足絕對可積條件,即使如此,它仍然存在傅里葉變換。由於

\[u(t)=\frac{1}{2}+\frac{1}{2}sgn(t) \]

兩邊進行傅里葉變換可以得到:

\[\begin{aligned} \mathscr{F}[u(t)]&=\mathscr{F}(\frac{1}{2})+\frac{1}{2}\mathscr{F}[sng(t)]\\ &= \pi\delta(\omega)+\frac{1}{j\omega} \end{aligned} \tag{7} \]

8. 正弦、余弦信號的傅里葉變換

\(\mathscr{F}[f_{0}(t)]=F_{0}(\omega)\),由頻移特性可知

\[\mathscr{F}[f_{0}(t)e^{j\omega_{1}t}]=F_{0}(\omega-\omega_{1}) \]

上式中,令\(f_{0}(t)=1\),其傅里葉變換為\(\mathscr{F}[1]=2\pi\delta(\omega)\),那么上式變為:

\[\mathscr{F}[e^{j\omega_{1}t}]=2\pi\delta(\omega-\omega_{1}) \]

同理:

\[\mathscr{F}[e^{-j\omega_{1}t}]=2\pi\delta(\omega+\omega_{1}) \]

由兩式並結合歐拉公式,可以得到:

\[\left \{ \begin{aligned} \mathscr{F}[cos(\omega_{1}t)]&=\pi[\delta(\omega+\omega_{1})+\delta(\omega-\omega_{1})] \\ \mathscr{F}[sin(\omega_{1}t)]&=j\pi[\delta(\omega+\omega_{1})-\delta(\omega-\omega_{1})] \end{aligned} \tag{8} \right. \]

9. 一般周期信號的傅里葉變換

令周期信號\(f(t)\)的周期為\(T_{1}\),角頻率為\(\omega_{1}(=2\pi f_{1}=\frac{2\pi}{T_{1}})\),可以將\(f(t)\)展成傅里葉級數,為:

\[f(t)=\sum_{n=-\infty}^{\infty}F_{n}e^{jn\omega_{1}t} \]

將上式兩邊取傅里葉變換

\[\begin{aligned} \mathscr{F}[f(t)]&=\mathscr{F}[\sum_{n=-\infty}^{\infty}F_{n}e^{jn\omega_{1}t}] \\ &= \sum_{n=-\infty}^{\infty}F_{n}\mathscr{F}[e^{jn\omega_{1}t}] \\ &= 2\pi\sum_{n=-\infty}^{\infty}F_{n}\delta(\omega-n\omega_{1}) \end{aligned} \tag{9} \]

其中\(F_{n}\)\(f(t)\)的傅里葉級數的系數,已經知道它等於

\[F_{n}=\frac{1}{T_{1}}\int_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}}f(t)e^{-jn\omega_{1}t}dt \tag{9a} \]

\((9)\)表明,周期信號\(f(t)\)的傅里葉變換是由一些沖激函數組成,這些沖激位於信號的諧頻(\(0,\pm\omega_{1},\pm\omega_{2},\cdots\))處,每個沖激的強度等於\(f(t)\)的傅里葉級數相應系數\(F_{n}\)\(2\pi\)倍。顯然,周期信號的頻譜是離散的。然而,由於傅里葉變換反應頻譜密度的概念,因此周期函數的傅里葉變換不同於傅里葉級數,這里不是有限值,而是沖激函數,它表明在無窮小的頻帶范圍內(即諧頻點)取得了無限大的頻譜值。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM