極值充分條件


極值充分條件

設二元函數\(f\)在點\(P_0(x_0,y_0)\)的某鄰域\(U(P_0)\)上具有二階連續偏導數,且\(P_0\)\(f\)的穩定點。則當\(H_f(P_0)\)是正定矩陣時,\(f\)在點\(P_0\)處取得極小值;當\(H_f(P_0)\)是負定矩陣時,\(f\)在點\(P_0\)處取得極大值;當\(H_f(P_0)\)是不定矩陣,\(f\)在點\(P_0\)不取極值

證:

\(f\)\(P_0\)的二階泰勒公式

\[\begin{align} f(x,y)-f(x_0,y_0)=&\\ &\nabla f(x_0,y_0)^T\begin{pmatrix}\Delta x\\\ \Delta y \end{pmatrix}-\frac12(\Delta x,\Delta y)H_f(P_0)\begin{pmatrix}\Delta x\\\ \Delta y \end{pmatrix}+o(\Delta x^2+\Delta y^2)\\ &&\\ =&(f_x,f_y)^T\begin{pmatrix}\Delta x\\\ \Delta y \end{pmatrix}-\frac12(\Delta x,\Delta y)H_f(P_0)\begin{pmatrix}\Delta x\\\ \Delta y \end{pmatrix}+o(\Delta x^2+\Delta y^2) \end{align} \]

假定\(f\)具有二階連續偏導數,並記作:

\[H_f(P_0)=\begin{pmatrix}f_{xx}(P_0)&f_{xy}(P_0)\\f_{yx}(P_0)&f_{yy}(P_0) \end{pmatrix}=\begin{pmatrix}f_{xx}&f_{xy}\\ f_{yx}&f_{yy} \end{pmatrix}_{P_0} \]

由於\(f\)具有二階連續偏導數,所以\(f_{xy}=f_{yx}\)

由於\(P_0\)\(f\)的穩定點,所以\(f_x(P_0)=f_y(P_0)=0\),有

\[\begin{align}f(x,y)-f(x_0,y_0)=&\frac12(\Delta x,\Delta y)H_f(P_0)(\Delta x,\Delta y)^T+o(\Delta x^2+\Delta y^2)\\ =&\frac12(\Delta x,\Delta y)\begin{pmatrix}f_{xx}&f_{xy}\\ f_{yx}&f_{yy} \end{pmatrix}_{P_0}(\Delta x,\Delta y)^T\\=& f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2) \end{align} \]

由二元一次方程\(ax^2+bx+c\),不妨令\(a=f_{xx},\,b=2f_{xy}\Delta y,\, c=f_{yy}\Delta y^2\),則\(\Delta=b^2-4ac=4f_{xy}^2\Delta y^2-4f_{xx}f_{yy}\Delta y^2=f_{xy}^2-f_{xx}f_{yy}\)

  1. \(f_{xx}>0\),\(\Delta=f_{xy}^2-f_{xx}f_{yy}<0\)\(f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)\)是一個開口向上,與x軸沒有交點的拋物線,此時\(f(x,y)-f(x_0,y_0)=f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)>0\)成立,得證\(f\)\(P_0\)處取得極小值
  2. \(f_{xx}<0,\,\Delta=f_{xy}^2-f_{xx}f_{yy}<0\),則\(f\)為開口向下,與x軸沒有交點的拋物線,函數恆小於0,此時\(f(x,y)-f(x_0,y_0)=f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)<0\),即\(f\)在點\(P_0\)處取得極大值
  3. \(\Delta=f_{xy}^2-f_{xx}f_{yy}>0\)時,拋物線與x軸有交點,有正有負,\(f\)\(P_0\)處不能取得極值
  4. \(\Delta=f_{xy}^2-f_{xx}f_{yy}=0\)時,不能肯定\(f\)是否在點\(P_0\)處取得極值

\(H_f\)正定,則\(H_f\)的順序主子式都大於0,所以\(f_{xx}>0,f_{xx}f_{yy}-f_{xy}^2>0\)時,恰好\(H_f\)正定,且\(f\)\(P_0\)處取得極小值,

\(H_f\)負定,\(f_{xx}<0,f_{xx}f_{yy}-f_{xy}^2>0\)時,\(f\)\(P_0\)處取得極大值

\(H_f\)不定,則不取得極值


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM