极值充分条件
设二元函数\(f\)在点\(P_0(x_0,y_0)\)的某邻域\(U(P_0)\)上具有二阶连续偏导数,且\(P_0\)是\(f\)的稳定点。则当\(H_f(P_0)\)是正定矩阵时,\(f\)在点\(P_0\)处取得极小值;当\(H_f(P_0)\)是负定矩阵时,\(f\)在点\(P_0\)处取得极大值;当\(H_f(P_0)\)是不定矩阵,\(f\)在点\(P_0\)不取极值
证:
由\(f\)在\(P_0\)的二阶泰勒公式
假定\(f\)具有二阶连续偏导数,并记作:
由于\(f\)具有二阶连续偏导数,所以\(f_{xy}=f_{yx}\)
由于\(P_0\)是\(f\)的稳定点,所以\(f_x(P_0)=f_y(P_0)=0\),有
由二元一次方程\(ax^2+bx+c\),不妨令\(a=f_{xx},\,b=2f_{xy}\Delta y,\, c=f_{yy}\Delta y^2\),则\(\Delta=b^2-4ac=4f_{xy}^2\Delta y^2-4f_{xx}f_{yy}\Delta y^2=f_{xy}^2-f_{xx}f_{yy}\)
- \(f_{xx}>0\),\(\Delta=f_{xy}^2-f_{xx}f_{yy}<0\),\(f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)\)是一个开口向上,与x轴没有交点的抛物线,此时\(f(x,y)-f(x_0,y_0)=f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)>0\)成立,得证\(f\)在\(P_0\)处取得极小值
- \(f_{xx}<0,\,\Delta=f_{xy}^2-f_{xx}f_{yy}<0\),则\(f\)为开口向下,与x轴没有交点的抛物线,函数恒小于0,此时\(f(x,y)-f(x_0,y_0)=f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2+o(\Delta x^2+\Delta y^2)<0\),即\(f\)在点\(P_0\)处取得极大值
- \(\Delta=f_{xy}^2-f_{xx}f_{yy}>0\)时,抛物线与x轴有交点,有正有负,\(f\)在\(P_0\)处不能取得极值
- \(\Delta=f_{xy}^2-f_{xx}f_{yy}=0\)时,不能肯定\(f\)是否在点\(P_0\)处取得极值
若\(H_f\)正定,则\(H_f\)的顺序主子式都大于0,所以\(f_{xx}>0,f_{xx}f_{yy}-f_{xy}^2>0\)时,恰好\(H_f\)正定,且\(f\)在\(P_0\)处取得极小值,
若\(H_f\)负定,\(f_{xx}<0,f_{xx}f_{yy}-f_{xy}^2>0\)时,\(f\)在\(P_0\)处取得极大值
若\(H_f\)不定,则不取得极值