\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【高分突破系列】高一數學上學期同步知識點剖析精品講義與分層練習]
(https://www.zxxk.com/docpack/2783085.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)
必修第一冊同步拔高練習,難度3顆星!
模塊導圖
知識剖析
周期函數
一般地,對於函數\(f(x)\),如果存在一個非零常數\(T\),使得定義域內的每一個\(x\)值,都滿足\(f(x+T)=f(x)\),那么函數\(f(x)\)就叫做周期函數,\(T\)叫做該函數的周期.
\({\color{Red} {PS }}\)
①從解析式\(f(x+T)=f(x)\)來看:任一自變量\(x\)對應函數值\(y\)與\(x\)增加\(T\)后對應函數值相等;
②從圖象看:整體函數圖象是由一部分圖象像“分身術”一樣向兩邊延申,而那一部分圖象的水平長度就是其正周期!

③ 三角函數就是典型的周期函數.
正弦函數,余弦函數的圖像與性質
\({\color{Red} { 注}}\) 表中的\(k∈Z\)

正切函數的圖像與性質
\({\color{Red} {注}}\) 表中的\(k∈Z\)

經典例題
【題型一】求解三角函數的性質
性質1 周期性
【典題1】 \(f(x)=|\sin x|+|\cos x|\)的最小正周期是( )
A.\(\dfrac{\pi}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(π\) \(\qquad \qquad \qquad \qquad\) C.\(2π\) \(\qquad \qquad \qquad \qquad\)D.\(3π\)
【解析】\(f\left(x+ \dfrac{\pi}{2}\right)=\left|\sin \left(x+\dfrac{\pi}{2}\right)\right|+\left|\cos \left(x+\dfrac{\pi}{2}\right)\right|\)\(=|\cos x|+|\sin x|=f(x)\),
故\(\dfrac{\pi}{2}\)是\(y=f(x)\)的周期,由選項可知選\(A\).
【點撥】從定義出發:存在一個非零常數\(T\),使得定義域內的每一個\(x\)值,都滿足\(f(x+T)=f(x)\),則\(T\)叫做該函數的周期.
【典題2】下列函數中,最小正周期為\(\dfrac{\pi}{2}\)的是( )
A.\(y=\sin|x|\) \(\qquad \qquad\)B.\(y=\cos|2x|\)\(\qquad \qquad\) C.\(y=|\tan x|\) \(\qquad \qquad\)D.\(y=|\sin2x|\)
【解析】由圖可知函數\(y=\sin|x|\)不是周期函數,故\(A\)不正確;

由於函數\(y=\cos|2x|=\cos2x\)的周期為\(\dfrac{2 \pi}{2}=\pi\),故\(B\)不正確;

由圖可知函數\(y=|\tan x|\)的周期\(T=π\),故\(C\)不正確;

由圖可知函數\(y=|\sin2x|\)的周期為\(T=\dfrac{\pi}{2}\),故\(D\)正確,

故選:\(D\).
【點撥】
① 函數\(f(x)=A\sin(ωx+φ)\), \(f(x)=A\cos(ωx+φ)\)的最小正周期\(T=\dfrac{2 \pi}{\omega}\),函數\(f(x)=A\tan(ωx+φ)\)的最小正周期\(T=\frac{\pi}{\omega}\);
② 利用函數的對稱變換與翻轉變換,利用圖象判斷函數周期更容易些.
性質2 對稱性
【典題1】 函數\(y=\sin \left(2 x+\dfrac{\pi}{3}\right)\)的圖象( )
A.關於點\(\left(\dfrac{\pi}{6}, 0\right)\)對稱 \(\qquad \qquad \qquad \qquad\) B.關於點\(\left(\dfrac{\pi}{3}, 0\right)\)對稱
C.關於直線\(x=\dfrac{\pi}{6}\)對稱 \(\qquad \qquad \qquad \qquad\)D.關於直線\(x=\dfrac{\pi}{3}\)對稱
【解析】 \({\color{Red} {方法1 }}\)對於函數\(y=\sin \left(2 x+\dfrac{\pi}{3}\right)\),
\({\color{Red} { (求出函數的所有對稱軸和對稱中心再判斷)}}\)
令\(2 x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k \pi\),則\(x=\dfrac{\pi}{12}+\dfrac{k \pi}{2}\) ,
則函數的對稱軸是\(x=\dfrac{\pi}{12}+\dfrac{k \pi}{2}\left(k \in Z \right)\),
若\(\dfrac{\pi}{12}+\dfrac{k \pi}{2}=\dfrac{\pi}{6}\),解得\(k=\dfrac{1}{6} \notin Z\),\(\dfrac{\pi}{12}+\dfrac{k \pi}{2}=\dfrac{\pi}{3}\),\(k=\dfrac{1}{2} \notin Z\),故排除\(C ,D\);
令\(2 x+\dfrac{\pi}{3}=k \pi\),則\(x=-\dfrac{\pi}{6}+\dfrac{k \pi}{2}\) ,
則函數的對稱中心是\(\left(-\dfrac{\pi}{6}+\dfrac{k \pi}{2}, 0\right) \left(k \in Z \right)\),
若\(-\dfrac{\pi}{6}+\dfrac{k\pi}{2}=\dfrac{\pi}{6}\),解得\(k=\dfrac{2}{3}\notin Z\),可排除\(A\);
若\(-\dfrac{\pi}{6}+\dfrac{k\pi}{2}=\dfrac{\pi}{3}\),解得\(k=1\in Z\),故關於\((\dfrac{\pi}{3},0)\)對稱.
\({\color{Red} { 方法2}}\) 對於函數\(y=\sin \left(2 x+\dfrac{\pi}{3}\right)\),
當\(x=\dfrac{\pi}{6}\)時,\(2 x+\dfrac{\pi}{3}=\dfrac{2 \pi}{3}\),而\(\left(\dfrac{2 \pi}{3}, 0\right)\)不是正弦函數\(y=\sin x\)的對稱中心,故\(A\)錯誤;
當\(x=\dfrac{\pi}{3}\)時,\(2 x+\dfrac{\pi}{3}=\pi\),而是正弦函數\(y=\sin x\)的對稱中心,故\(B\)正確;
當\(x=\dfrac{\pi}{6}\)時,\(2 x+\dfrac{\pi}{3}=\dfrac{2 \pi}{3}\),而\(x=\dfrac{2π}{3}\)不是正弦函數\(y=\sin x\)的對稱軸,故\(C\)錯誤;
當\(x=\dfrac{\pi}{3}\)時,\(2 x+\dfrac{\pi}{3}=\pi\),而\(x=π\)不是正弦函數\(y=\sin x\)的對稱軸,故\(D\)錯誤;
故選:\(B\).
【點撥】本題兩種方法,
方法1是求出三角函數的全部對稱軸或對稱中心(此時把\(ωx+φ\)看成整體),再判斷;
方法2是把問題轉化正弦函數\(y=\sin x\)的性質判斷;
對於三角函數\(f(x)=A \sin (\omega x+\varphi)+B\)
① 若\(x=x_0\)是其對稱軸,則\(ωx_0+φ\)是正弦函數\(y=\sin x\)的對稱軸;
② 若\((x_0,B)\)是其對稱中心,則\((ωx_0+φ ,B)\)滿足函數\(y=Asinx+B\)的對稱中心.
對於三角函數\(f(x)=A\cos(ωx+φ)+B\)類似.
【典題2】 已知函數\(f(x)=\cos (3 x+\varphi)\left(-\frac{\pi}{2}<\varphi<\dfrac{\pi}{2}\right)\)圖象關於直線\(x=\dfrac{5 \pi}{18}\)對稱,則函數\(f(x)\)在區間\([0,π]\)上零點的個數為\(\underline{\quad \quad}\) .
【解析】\(∵\)函數\(f(x)=\cos(3x+φ)\)圖象關於直線\(x=\dfrac{5 \pi}{18}\)對稱,
\(\therefore 3 \times \dfrac{5 \pi}{18}+\varphi=k \pi\),
\({\color{Red} {(y=\cos x的對稱軸是x=kπ) }}\)
\(\therefore \varphi=-\dfrac{5 \pi}{6}+k \pi, \quad k \in Z\),
由\(-\dfrac{\pi}{2}<\varphi<\dfrac{\pi}{2}\)知,\(k=1\)時,\(\varphi=\dfrac{\pi}{6}\),
故\(f(x)=\cos \left(3 x+\dfrac{\pi}{6}\right)\),
令\(f(x)=0\)得\(3 x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k \pi\),\(k∈Z\),
\(∴x=\dfrac{\pi}{9}+\dfrac{k \pi}{3}\),\(k∈Z\).
因為\(x∈[0,π]\),所以\(k=0,1,2\)時,\(\varphi=\dfrac{\pi}{9}, \dfrac{4 \pi}{9}, \dfrac{7 \pi}{9}\)滿足條件,故零點有三個.
性質3 單調性
【典題1】 函數\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)的一個單調遞減區間是( )
A.\(\left[\dfrac{7 \pi}{12}, \frac{13 \pi}{12}\right]\) \(\qquad \qquad \qquad \qquad\) B.\(\left[\dfrac{\pi}{12}, \dfrac{7 \pi}{12}\right]\) \(\qquad \qquad \qquad \qquad\) C.\(\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\) \(\qquad \qquad \qquad \qquad\) D.\(\left[-\dfrac{5 \pi}{6}, \dfrac{\pi}{6}\right]\)
【解析】 \({\color{Red} {(求出函數的減區間) }}\)
解\(-\dfrac{\pi}{2}+2 k \pi \leq \dfrac{2 \pi}{3}-2 x \leq \dfrac{\pi}{2}+2 k \pi\)
得\(\dfrac{\pi}{12}-k \pi \leq x \leq \dfrac{7 \pi}{12}-k \pi(k \in \boldsymbol{Z})\),
\(k=0\)時,\(\dfrac{\pi}{12} \leq x \leq \dfrac{7 \pi}{12}\);\(k=1\)時,\(-\dfrac{11 \pi}{12} \leq x \leq-\dfrac{5 \pi}{12}\);\(k=-1\)時,\(\dfrac{13 \pi}{12} \leq x \leq \dfrac{19 \pi}{12}\),
\(\therefore\left[\dfrac{\pi}{12}, \dfrac{7 \pi}{12}\right]\)是\(f(x)\)的一個單調遞減區間.
故選:\(B\).
【點撥】
① 復合函數的單調性:同增異減
函數\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)可看成\(y=3\sin u\)與\(u=\dfrac{2 \pi}{3}-2 x\)組成復合函數.
因為\(u=\dfrac{2 \pi}{3}-2 x\)是減函數,求函數\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)的減區間,則把\(\dfrac{2 \pi}{3}-2 x\)代入\(y=\sin x\)的增區間\(\left[-\dfrac{\pi}{2}+2 k \pi, \dfrac{\pi}{2}+2 k \pi\right]\)求出\(x\)的范圍.
② 判斷\(\left[\dfrac{7 \pi}{12}, \dfrac{13 \pi}{12}\right]\)是否\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)的一個單調遞減區間,也可以采取前面判斷對稱性的方法.具體想法如下
\(\left[\dfrac{7 \pi}{12}, \dfrac{13 \pi}{12}\right]\)是\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)的一個單調遞減區間
\(⇔\left[\dfrac{7 \pi}{12}, \dfrac{13 \pi}{12}\right]\)是\(f(x)=3 \sin \left(2 x-\dfrac{2 \pi}{3}\right)\)的一個單調遞增區間
\(⇔\)由\(\dfrac{7 \pi}{12}<x<\dfrac{13 \pi}{12} \Rightarrow-\dfrac{3 \pi}{2}<\dfrac{2 \pi}{3}-2 x<-\dfrac{\pi}{2}\),而\(\left[-\dfrac{3 \pi}{2},-\dfrac{\pi}{2}\right]\)不是\(y=\sin x\)的增區間;
故\(\left[\dfrac{7 \pi}{12}, \dfrac{13 \pi}{12}\right]\)不是\(f(x)=3 \sin \left(2 x-\dfrac{2 \pi}{3}\right)\)的一個單調遞增區間,不是\(f(x)=3 \sin \left(\dfrac{2 \pi}{3}-2 x\right)\)的一個單調遞減區間,即選項\(A\)錯誤.
作某些選擇題這樣做會簡潔些.
【典題2】若\(f(x)=\sin \left(2 x-\dfrac{\pi}{4}\right)\),則 ( )
A.\(f(1)>f(2)>f(3)\) \(\qquad \qquad \qquad \qquad\) B.\(f(3)>f(2)>f(1)\)
C.\(f(2)>f(1)>f(3)\) \(\qquad \qquad \qquad \qquad\) D.\(f(1)>f(3)>f(2)\)
【解析】\({\color{Red} { (顯然選項是由函數單調性作出判斷)}}\)
令\(-\dfrac{\pi}{2}+2 k \pi<2 x-\dfrac{\pi}{4}<\dfrac{\pi}{2}+2 k \pi\),
解得\(-\dfrac{\pi}{8}+k \pi<x<\dfrac{3 \pi}{8}+k \pi(k \in Z)\),
故\(f(x)=\sin \left(2 x-\dfrac{\pi}{4}\right)\)在\(\left[-\dfrac{\pi}{8}, \dfrac{3 \pi}{8}\right]\)上遞增,
由函數的周期性易得函數在\(\left[\dfrac{3 \pi}{8}, \dfrac{7 \pi}{8}\right]\)上遞增,關於\(x=\dfrac{7 \pi}{8}\)對稱,
\({\color{Red} {(由於1,2,3在[\dfrac{\pi}{2}, \pi]內,需要了解函數在其附近的單調性,相當數形結合的思路)}}\)
其中\(3\)比\(2\)離對稱軸\(x=\dfrac{7 \pi}{8}\)更近些,
所以\(f(3)<f(2)<0\),而\(f(1)\)接近\(1\),
所以\(f(1)>f(2)>f(3)\).
故選:\(A\).
性質4 最值
【典題1】 若函數\(f(x)=\cos \left(\omega x-\dfrac{\pi}{3}\right)(\omega>0)\)的最小正周期為\(\dfrac{\pi}{2}\),則\(f(x)\)在\(\left[0, \dfrac{\pi}{4}\right]\)上的值域為\(\underline{\quad \quad}\).
【解析】依題意得\(\dfrac{2 \pi}{\omega}=\dfrac{\pi}{2}\),\(∴ω=4\).
\(\because x \in\left[0, \dfrac{\pi}{4}\right]\),\(\therefore 4 x-\dfrac{\pi}{3} \in\left[-\dfrac{\pi}{3}, \dfrac{2 \pi}{3}\right]\),
\(\therefore \cos \left(4 x-\dfrac{\pi}{3}\right) \in\left[-\dfrac{1}{2}, 1\right]\),
即\(f(x)\)的值域是\(\left[-\dfrac{1}{2}, 1\right]\).
【典題2】已知函數\(f(x)=2 \cos \left(2 x-\dfrac{\pi}{3}\right)\)在\(\left[a-\dfrac{\pi}{4}, a\right](a \in \boldsymbol{R})\)上的最大值為\(y_1\),最小值為\(y_2\),則\(y_1-y_2\)的取值范圍是\(\underline{\quad \quad}\).
【解析】函數\(f(x)=2 \cos \left(2 x-\dfrac{\pi}{3}\right)\)的周期為\(π\),
且對稱軸為\(x=\dfrac{\pi}{6}+\dfrac{k \pi}{2}\),對稱中心\(\left(\dfrac{5 \pi}{12}+k \pi, 0\right)\),\(k∈Z\),
\(f(x)\)的圖象大致如圖所示;

區間\(\left[a-\dfrac{\pi}{4}, a\right]\)正好是函數\(\dfrac{1}{4}\)個周期,在一個周期內討論就行,
設\(\left[a-\dfrac{\pi}{4}, a\right]\)的中點為\(P\),
由圖可知,
當點\(P\)落在對稱軸上,即\(a-\dfrac{\pi}{8}=\dfrac{\pi}{6}\)時,\(y_1=2\),\(y_{2}=\sqrt{2}\),
此時\(y_1-y_2\)取得最小值為\(2-\sqrt{2}\);
當點\(P\)落在對稱中心上,即\(a-\dfrac{\pi}{8}=\dfrac{5 \pi}{12}\)時,\(y_1=\sqrt{2}\),\(y_{2}=-\sqrt{2}\),
此時\(y_1-y_2\)的值為\(2 \sqrt{2}\);
\(∴y_1-y_2\)的取值范圍是\([2-\sqrt{2}, 2 \sqrt{2}]\).
【點撥】
① 對於正弦函數、余弦函數,由圖可知,相對而言靠近對稱軸位置,函數值變化較慢,而靠近對稱中心位置函數值變化較快些.
② 本題也屬於“縱向距”問題,數形結合處理恰當.
鞏固練習
1(★)下列函數中最小正周期為\(π\)的函數是( )
A.\(y=\sin x\) \(\qquad \qquad\)B.\(y=\cos \dfrac{1}{2} x\) \(\qquad \qquad\)C.\(y=\tan2x\) \(\qquad \qquad\)D.\(y=|\sin x|\)
2(★)下列函數中,關於直線\(x=-\dfrac{\pi}{6}\)對稱的是( )
A.\(y=\sin \left(x+\dfrac{\pi}{3}\right)\)\(\qquad \qquad \qquad \qquad\) B.\(y=\sin \left(2 x+\dfrac{\pi}{3}\right)\)
C.\(y=\cos \left(x+\dfrac{\pi}{3}\right)\)\(\qquad \qquad \qquad \qquad\) D.\(y=\cos \left(2 x+\dfrac{\pi}{3}\right)\)
3(★)設函數\(f(x)=\cos \left(2 x-\dfrac{\pi}{3}\right)\),則下列結論錯誤的是( )
A.\(f(x)\)的一個周期為\(-π\)
B.\(y=f(x)\)的圖象關於直線\(x=\dfrac{2 \pi}{3}\)對稱
C.\(f\left(x+\dfrac{\pi}{2}\right)\)的一個零點為\(x=-\dfrac{\pi}{3}\)
D.\(f(x)\)在區間\(\left[\dfrac{\pi}{3}, \dfrac{\pi}{2}\right]\)上單調遞減
4(★)下列函數中,以\(π\)為周期且在區間\(\left(\dfrac{\pi}{2}, \pi\right)\)單調遞增的是( )
A.\(f(x)=|\cos2x|\) \(\qquad \qquad\) B.\(f(x)=|\sin2x|\)\(\qquad \qquad\) C.\(f(x)=|\cos x|\) \(\qquad \qquad\)D.\(f(x)=|\sin x|\)
5(★) 關於函數\(f(x)=|\tan x|\)的性質,下列敘述不正確的是( )
A.\(f(x)\)的最小正周期為\(\dfrac{\pi}{2}\)
B.\(f(x)\)是偶函數
C.\(f(x)\)的圖象關於直線\(x=\dfrac{k \pi}{2}(k \in \mathbf{Z})\)對稱
D.\(f(x)\)在每一個區間\(\left(k \pi, k \pi+\dfrac{\pi}{2}\right)(k \in \boldsymbol{Z})\)內單調遞增
6(★★) 下列函數中,以\(2π\)為周期,\(x=\dfrac{\pi}{2}\)為對稱軸,且在\(\left(0, \dfrac{\pi}{2}\right)\)上單調遞增的函數是( )
A.\(y=2|\sin x|+\sin x\) \(\qquad \qquad \qquad \qquad\) B.\(y=2 \cos \left(x+\dfrac{\pi}{2}\right)\)
C.\(y=\sin \left(2 x-\dfrac{\pi}{2}\right)\)\(\qquad \qquad \qquad \qquad\)D.\(y=\tan \left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\)
7 (★★) 已知直線\(x=x_1 ,x=x_2\)分別是曲線\(f(x)=2 \sin \left(x+\dfrac{\pi}{3}\right)\)與\(g(x)=-\cos x\)的對稱軸,則\(f(x_1-x_2)=\)( )
A.\(2\) \(\qquad \qquad \qquad \qquad\) B.\(0\) \(\qquad \qquad \qquad \qquad\) C.\(±2\) \(\qquad \qquad \qquad \qquad\) D.\(±1\)
8 (★★)關於函數\(f(x)=|\sin x|+\cos x\)有下述四個結論:
①\(f(x)\)是周期函數;
②\(f(x)\)的最小值為\(-\sqrt{2}\);
③\(f(x)\)的圖象關於\(y\)軸對稱;
④\(f(x)\)在區間\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)單調遞增.
其中所有正確結論的編號是( )
A.①② \(\qquad \qquad \qquad \qquad\)B.①③ \(\qquad \qquad \qquad \qquad\)C.②③\(\qquad \qquad \qquad \qquad\) D.②④
9(★★★)已知函數\(f(x)=\sin (\omega x+\varphi)\)\(\left(\omega>0,0<\varphi<\dfrac{\pi}{2}\right)\)的最小正周期為\(π\),且關於\(\left(-\dfrac{\pi}{8}, 0\right)\)中心對稱,則下列結論正確的是( )
A.\(f(1)<f(0)<f(2)\) \(\qquad\)B.\(f(0)<f(2)<f(1)\) \(\qquad\) C.\(f(2)<f(0)<f(1)\) \(\qquad\) D.\(f(2)<f(1)<f(0)\)
10(★★★)已知\(f(x)=\sin(ωx+φ)(ω>0,0<φ≤π)\)是\(R\)上的奇函數,若\(f(x)\)的圖象關於直線\(x=\dfrac{\pi}{4}\)對稱,且\(f(x)\)在區間\(\left[-\dfrac{\pi}{22}, \dfrac{\pi}{11}\right]\)內是單調函數,則\(f\left(\dfrac{\pi}{6}\right)=\)( )
A.\(-\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\)B.\(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\)C.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\)D.\(\dfrac{\sqrt{3}}{2}\)
答案
- \(D\)
- \(D\)
- \(C\)
- \(C\)
- \(A\)
- \(A\)
- \(C\)
- \(B\)
- \(D\)
- \(A\)
【題型二】根據三角函數性質求解參數的值或范圍
【典題1】 已知\(ω>0\),函數\(f(x)=\sin \left(\omega x-\dfrac{\pi}{4}\right)\)的圖象在區間\(\left(\dfrac{\pi}{2}, \pi\right)\)上有且僅有一條對稱軸,則實數\(ω\)的取值范圍是\(\underline{\quad \quad}\).
【解析】 由\(\omega x-\dfrac{\pi}{4}=k \pi+\dfrac{\pi}{2}\),
解得\(x=\dfrac{k \pi}{\omega}+\dfrac{3 \pi}{4 \omega}\),
則\(y=f(x)\)的對稱軸\(x=\dfrac{k \pi}{\omega}+\dfrac{3 \pi}{4 \omega}\),\(k∈Z\)
由\(y=f(x)\)在\(\left(\dfrac{\pi}{2}, \pi\right)\)上有一條對稱軸,
則滿足\(\dfrac{\pi}{2}<\dfrac{k \pi}{\omega}+\dfrac{3 \pi}{4 \omega}<\pi\),
\({\color{Red} {(存在性) }}\)
即\(k+\dfrac{3}{4}<\omega<2 k+\dfrac{3}{2}\),①
而對稱軸只有一條,
則要滿足\(\dfrac{(k-1) \pi}{\omega}+\dfrac{3 \pi}{4 \omega} \leq \dfrac{\pi}{2}\)
且\(\dfrac{(k+1) \pi}{\omega}+\dfrac{3 \pi}{4 \omega} \geq \pi\),
\({\color{Red} {(唯一性) }}\)
即\(2 k-\dfrac{1}{2} \leq \omega \leq k+\dfrac{7}{4}\) ②
由①②可得\(\left\{\begin{array}{l} k+\dfrac{3}{4}<2 k+\dfrac{3}{2} \\ 2 k-\dfrac{1}{2} \leq k+\dfrac{7}{4} \end{array}\right.\),解得\(k=0,1,2\);
當\(k=0\)時,由①②可得\(\omega \in\left(\dfrac{3}{4}, \dfrac{3}{2}\right)\);
當\(k=1\)時,由①②可得\(\omega \in\left(\dfrac{7}{4}, \dfrac{11}{4}\right]\);
當\(k=2\)時,由①②可得\(\omega \in\left[\dfrac{7}{2}, \dfrac{15}{4}\right]\);
故答案為:\(\left(\dfrac{3}{4}, \dfrac{3}{2}\right) \cup\left(\dfrac{7}{4}, \dfrac{11}{4}\right] \cup\left[\dfrac{7}{2}, \dfrac{15}{4}\right]\).
【點撥】
① 本題的思路是先求出函數的對稱軸,再數形結合處理;理解“有且僅有一條對稱軸”,存在一條對稱軸在區間內,而其左右的對稱軸在區間外;
② 本題涉及到兩個參數\(k\)和\(ω\),求的是\(ω\)的取值范圍,方法是得到\(k\)和\(ω\)的關系式,再由\(k∈Z\)的特殊性求出\(k\)的取值(或范圍),進而求\(ω\)的取值范圍.
【典題2】 已知函數\(f(x)=\left|\cos \left(\omega x+\dfrac{\pi}{3}\right)\right|(\omega>0)\)在區間\(\left[-\dfrac{\pi}{3}, \dfrac{5 \pi}{6}\right]\)上單調遞減,則\(ω\)的取值范圍為\(\underline{\quad \quad}\).
【解析】 \(y=|\cos x|\)的單調遞減區間為\(\left[k \pi, k \pi+\dfrac{\pi}{2}\right], k \in Z\),
(注 由函數\(y=|cosx|\)圖象易得)
由\(k \pi \leq \omega x+\dfrac{\pi}{3} \leq k \pi+\dfrac{\pi}{2}\) ,\(k∈Z\),
得\(\dfrac{k \pi-\dfrac{\pi}{3}}{\omega} \leq x \leq \dfrac{k \pi+\dfrac{\pi}{6}}{\omega}\),
即函數\(y=f(x)\)的單調遞減區間為\(\left[\dfrac{k \pi-\frac{\pi}{3}}{\omega}, \dfrac{k \pi+\frac{\pi}{6}}{\omega}\right]\),\(k∈Z\),
若\(f(x)\)在區間\(\left[-\dfrac{\pi}{3}, \dfrac{5 \pi}{6}\right]\)上單調遞減,
則\(\dfrac{k \pi-\frac{\pi}{3}}{\omega} \leq-\frac{\pi}{3}\)且\(\dfrac{k \pi+\frac{\pi}{6}}{\omega} \geq \dfrac{5 \pi}{6}\),
得\(\left\{\begin{array}{l} \omega \leq \dfrac{6}{5} k+\dfrac{1}{5} \\ \omega \leq-3 k+1 \end{array}\right.\),\(k∈Z\),
\(∵ω>0\) \(∴k\)只能取\(0\);
當\(k=0\)時,\(\left\{\begin{array}{l} \omega \leq \dfrac{1}{5} \\ \omega \leq 1 \end{array}\right.\),即\(0<\omega \leq \dfrac{1}{5}\),
即\(ω\) 的取值范圍是\(\left(0, \dfrac{1}{5}\right]\).
【點撥】本題先得到\(y=|\cos x|\)的單調減區間再由復合函數單調性得到求出\(f(x)=| \cos \left(\omega x+\dfrac{\pi}{3}\right) \mid\)的減區間\(\left[\dfrac{k \pi-\frac{\pi}{3}}{\omega}, \dfrac{k \pi+\frac{\pi}{6}}{\omega}\right]\),\(k∈Z\),根據題意肯定可得\(\left[-\dfrac{\pi}{3}, \dfrac{5 \pi}{6}\right] \subseteq\left[\dfrac{k \pi-\frac{\pi}{3}}{\omega}, \dfrac{k \pi+\frac{\pi}{6}}{\omega}\right]\).
【典題3】 已知函數\(f(x)=\sin \left(\omega x+\dfrac{\pi}{3}\right)\),\((ω>0)\)在區間\(\left[-\dfrac{2 \pi}{3}, \dfrac{5 \pi}{6}\right]\)上是增函數,且在區間\([0 ,π]\)上恰好取得一次最大值\(1\),則\(ω\)的取值范圍是 ( )
A.\(\left(0, \dfrac{1}{5}\right]\) \(\qquad \qquad \qquad \qquad\) B.\(\left[\dfrac{1}{2}, \dfrac{3}{5}\right]\) \(\qquad \qquad \qquad \qquad\)C.\(\left[\dfrac{1}{6}, \dfrac{1}{5}\right]\) \(\qquad \qquad \qquad \qquad\) D.\(\left[\dfrac{1}{2}, \dfrac{5}{2}\right)\)
【解析】方法一 復合函數法
令\(u=\omega x+\dfrac{\pi}{3}\),\(-\dfrac{2 \pi}{3} \leq x \leq \dfrac{5 \pi}{6}\),
則\(-\dfrac{2 \pi}{3} \omega+\dfrac{\pi}{3} \leq u \leq \dfrac{5 \pi}{6} \omega+\dfrac{\pi}{3}\).
\(∴\)函數\(y=\sin u\)在區間\(\left[-\dfrac{2 \pi}{3} \omega+\dfrac{\pi}{3}, \dfrac{5 \pi}{6} \omega+\dfrac{\pi}{3}\right]\)上單調遞增,
\(\therefore\left[-\dfrac{2 \pi}{3} \omega+\dfrac{\pi}{3}, \dfrac{5 \pi}{6} \omega+\dfrac{\pi}{3}\right] \subseteq\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\), \(\therefore \omega \leq \dfrac{1}{5}\).
當\(0≤x≤π\)時,\(\dfrac{\pi}{3} \leq u \leq \pi \omega+\dfrac{\pi}{3}\),
\(∴\)函數\(y=\sin u\)在區間\(\left[\dfrac{\pi}{3}, \pi \omega+\dfrac{\pi}{3}\right]\)恰好取一次最大值\(1\),
\(\therefore \dfrac{\pi}{2} \leq \pi \omega+\dfrac{\pi}{3}<\dfrac{5 \pi}{2}\),\(\therefore \dfrac{1}{6} \leq \omega \leq \dfrac{13}{6}\).
綜上所知\(\dfrac{1}{6} \leq \omega \leq \dfrac{1}{5}\),故選\(C\).
方法二 特殊值法
當\(\omega=\dfrac{1}{2}\)時,令\(u=\dfrac{x}{2}+\dfrac{\pi}{3}\),\(-\dfrac{2 \pi}{3} \leq x \leq \dfrac{5 \pi}{6}\),
則\(0 \leq u \leq \dfrac{3 \pi}{4}\),則函數\(y=\sin u\)在區間\(\left[0, \dfrac{3 \pi}{4}\right]\)上不單調,
\(\therefore \omega=\dfrac{1}{2}\)不合題意,排除\(BD\).
當\(\omega=\dfrac{1}{12}\)時,令\(u=\dfrac{x}{12}+\dfrac{\pi}{3}\),\(0≤x≤π\) ,
則\(\dfrac{\pi}{3} \leq u \leq \dfrac{5 \pi}{12}\),則函數\(y=\sin u\)在區間\(\left[\dfrac{\pi}{3}, \dfrac{5 \pi}{12}\right]\)取不到最大值\(1\),
\(\therefore \omega=\dfrac{1}{12}\)不合題意,排除\(A\).故選:\(C\).
【點撥】根據三角函數性質求解參數的值或范圍此類問題,往往都會限制函數在某個區間上的對稱軸、單調性、最值等,此時最簡單的想法就是先求出該函數的全部對稱軸、單調區間等,再結合函數的圖象判斷求出來的對稱軸、單
調性等與區間端點的關系!
鞏固練習
1(★★)設\(f(x)=3 \sin \left(\omega x-\dfrac{\pi}{12}\right)+1\),若\(f(x)\)在\(\left[-\dfrac{\pi}{3}, \dfrac{\pi}{6}\right]\)上為增函數,則\(ω\)的取值范圍是\(\underline{\quad \quad}\).
2(★★) 已知函數\(f(x)=3 \sin \left(\omega x+\dfrac{\pi}{6}\right)\)\((\omega>0)\)在\(\left(0, \dfrac{\pi}{12}\right)\)上單調遞增,則\(ω\)的最大值是\(\underline{\quad \quad}\).
3(★★) 設函數\(f(x)=\sin (\omega x+\phi)\) ,\(A>0\) ,\(ω>0\) , 若f(x)在區間\(\left[\dfrac{\pi}{6}, \dfrac{\pi}{2}\right]\)上單調,且\(f\left(\dfrac{\pi}{2}\right)=f\left(\dfrac{2 \pi}{3}\right)=-f\left(\dfrac{\pi}{6}\right)\),則\(f(x)\)的最小正周期為\(\underline{\quad \quad}\).
4(★★★)已知函數\(f(x)=\sin (\omega x+\varphi)(\omega>0)\)滿足\(f\left(\dfrac{\pi}{4}\right)=1\),\(f\left(\dfrac{\pi}{2}\right)=0\),且\(f(x)\)在區間\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{3}\right)\)上單調,則\(ω\)取值的個數有\(\underline{\quad \quad}\)個.
5(★★★)已知函數\(f(x)=\cos \left(\omega x+\dfrac{\pi}{6}\right)(\omega>0)\)在區間\([0 ,π]\)上的值域為\(\left[-1, \dfrac{\sqrt{3}}{2}\right]\),則\(ω\)的取值范圍為\(\underline{\quad \quad}\).
答案
- \(\left(0, \dfrac{5}{4}\right]\)
- \(4\)
- \(π\)
- \(3\)
- \(\left[\dfrac{5}{6}, \dfrac{5}{3}\right]\)
【題型三】 綜合解答題
【典題1】 已知函數\(f(x)=\sin \left(2 x-\dfrac{\pi}{3}\right)\).
(1)當\(x_{1} \in\left(-\dfrac{\pi}{2},-\dfrac{\pi}{3}\right)\) ,\(x_{2} \in\left(0, \dfrac{\pi}{6}\right)\)時\(f(x_1)+f(x_2)=0\),求\(x_1-x_2\)的值;
(2)令\(F(x)=f(x)-3\),若對任意\(x\)都有\(F^2 (x)-(2+m)F(x)+2+m≤0\)恆成立,求\(m\)的最大值.
【解析】\((1)f(x_1)+f(x_2)=0\),
即為\(\sin \left(2 x_{1}-\dfrac{\pi}{3}\right)+\sin \left(2 x_{2}-\dfrac{\pi}{3}\right)=0\) ,
即有\(\sin \left(2 x_{1}-\dfrac{\pi}{3}\right)=-\sin \left(2 x_{2}-\dfrac{\pi}{3}\right)=\sin \left(\dfrac{\pi}{3}-2 x_{2}\right)\),
可得\(2 x_{1}-\dfrac{\pi}{3}=2 k \pi+\dfrac{\pi}{3}-2 x_{2}\),
或\(2 x_{1}-\dfrac{\pi}{3}=2 k \pi+\pi-\dfrac{\pi}{3}+2 x_{2}\) ,\(k∈Z\),
即有\(x_{1}+x_{2}=k \pi+\dfrac{\pi}{3}\)或\(x_{1}-x_{2}=k \pi+\dfrac{\pi}{2}\),
由\(x_{1} \in\left(-\dfrac{\pi}{2},-\dfrac{\pi}{3}\right)\) ,\(x_{2} \in\left(0, \dfrac{\pi}{6}\right)\),
可得\(x_{1}-x_{2} \in\left(-\dfrac{2 \pi}{3},-\dfrac{\pi}{3}\right)\),
可得\(x_{1}-x_{2}=-\dfrac{\pi}{2}\);
\((2)F(x)=f(x)-3\) 即\(F(x)=\sin \left(2 x-\dfrac{\pi}{3}\right)-3\),
令\(t=F(x)\),可得\(t∈[-4 ,-2]\),
對任意\(x\)都有\(F^2 (x)-(2+m)F(x)+2+m≤0\)恆成立,
即為\(t^2-(2+m)t+2+m≤0\),\(t∈[-4 ,-2]\);
則\(16+4(2+m)+2+m≤0\) ,\(4+2(2+m)+2+m≤0\),
解得\(m \leq-\dfrac{26}{5}\),即\(m\)的最大值為\(-\dfrac{26}{5}\).
【點撥】
① 若\(\sinα=\sinβ\),則\(α=2kπ+β\)或\(α=2kπ+π-β\)
② 第二問涉及恆成立問題,采取了二次函數零點的分布問題的方法即通過二次函數的圖象分析便可求解.
【典題2】 已知函數\(f(x)=\sin^2x+a\cos x+a\) ,\(a∈R\).
(1) 當\(a=1\)時,求函數\(f(x)\)的最大值;
(2) 如果對於區間\(\left[0, \dfrac{\pi}{2}\right]\)上的任意一個\(x\),都有\(f(x)≤1\)成立,求\(a\)的取值范圍.
【解析】(1) 當\(a=1\)時,\(f(x)=-\cos ^{2} x+\cos x+2\)\(=-\left(\cos x-\dfrac{1}{2}\right)^{2}+\dfrac{9}{4}\),
\(∵cosx∈[-1 ,1]\),
\(∴\)當\(\cos x=\dfrac{1}{2}\),
即\(x=2 k \pi \pm \dfrac{\pi}{3}(k \in Z)\)時,\([f(x)]_{\max }=\dfrac{9}{4}\).
(2) 依題得\(\sin^2x+a\cos x+a≤1\),
即\(a(\cos x+1) \leq \cos ^{2} x\)對任意\(x \in\left[0, \dfrac{\pi}{2}\right]\)恆成立.
當\(x \in\left[0, \dfrac{\pi}{2}\right]\)時,\(0≤cosx≤1\),則\(1≤cosx+1≤2\),
\(\therefore a \leq \dfrac{\cos ^{2} x}{\cos x+1}\)對任意\(x \in\left[0, \dfrac{\pi}{2}\right]\)恆成立.
令\(t=cosx+1\),則\(1≤t≤2\),
\(\therefore a \leq \dfrac{(t-1)^{2}}{t}=\dfrac{t^{2}-2 t+1}{t}=t+\dfrac{1}{t}-2\)對任意\(1≤t≤2\)恆成立,
於是\(a \leq\left(t+\dfrac{1}{t}-2\right)_{\min }\).
又\(\because t+\dfrac{1}{t}-2 \geq 0\),當且僅當\(t=1\),即\(x=\dfrac{\pi}{2}\)時取等號;
\(∴a≤0\).
【點撥】第二問涉及恆成立問題,利用了分離參數法和換元法.
鞏固練習
1(★★★)已知函數\(f(x)=\sqrt{3} \sin \left(\omega x-\dfrac{\pi}{6}\right)\)(其中\(ω>0\))的圖象上相鄰兩個最高點的距離為\(π\).
(1)求函數\(f(x)\)的圖象的對稱軸;
(2)若函數\(y=f(x)-m\)在\([0 ,π]\)內有兩個零點\(x_1 ,x_2\) , 求\(m\)的取值范圍及\(\cos(x_1+x_2)\)的值.
2(★★★)已知函數\(f(x)=\cos \left(\omega x+\dfrac{\pi}{3}\right)(\omega>0)\),圖象上任意兩條相鄰對稱軸間的距離為\(\dfrac{\pi}{2}\).
(1)求函數的單調區間和對稱中心.
(2)若關於\(x\)的方程\(2 \sin^2x-m\cos x-4=0\)在\(x \in\left(0, \dfrac{\pi}{2}\right)\)上有實數解,求實數\(m\)的取值范圍.
答案
- \(\text { (1) } x=\dfrac{k \pi}{2}+\dfrac{\pi}{3}, k \in Z\);
\(\text { (2) } m \in\left(-\sqrt{3},-\dfrac{\sqrt{3}}{2}\right) \cup\left(-\dfrac{\sqrt{3}}{2}, \sqrt{3}\right)\) ,\(\cos \left(x_{1}+x_{2}\right)=\dfrac{1}{2}\). - \((1)\)單調遞增區間\(\left[k \pi-\dfrac{2 \pi}{3}, k \pi-\dfrac{\pi}{6}\right]\) ,單調遞減區間\(\left[k \pi-\dfrac{\pi}{6}, k \pi+\dfrac{\pi}{3}\right]\),對稱中心為\(\left(\dfrac{1}{2} k \pi+\dfrac{\pi}{12}, 0\right) k \in Z\),
\((2)\{m|m<-4\}\).
