\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【高分突破系列】高一數學上學期同步知識點剖析精品講義與分層練習]
(https://www.zxxk.com/docpack/2783085.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)
必修第一冊同步拔高練習,難度3顆星!
模塊導圖
知識剖析
任意角的三角函數的概念
設\(α\)是一個任意角,\(α∈R\),它的終邊\(OP\)與單位圓相交於點\(P(x,y)\).
① 把點\(P\)的縱坐標\(y\)叫做\(α\)的正弦函數,記作\(\sin α\),即\(y=\sin α\);
② 把點\(P\)的縱坐標\(x\)叫做\(α\)的余弦函數,記作\(\cos α\),即\(x=\cos α\);
③ 把點\(P\)的縱坐標\(\dfrac{y}{x}\)叫做\(α\)的正切函數,記作\(\tanα\),即\(\dfrac{y}{x}=\tan \alpha(x \neq 0)\).

正弦函數\(f(x)=\sin x,x∈R\);
余弦函數\(f(x)=\cos x,x∈R\);
正切函數\(f(x)=\tan x,x≠\dfrac{\pi}{2}+kπ\),
它們統稱三角函數.
三角函數在各個象限的符號
根據三角函數定義可知它們在各個象限符號
(設\(α\)的終邊上一點\(P(x,y)\),\(\sin α\)符號看\(y\),\(\cos α\)符號看\(x\),\(\tan α\)符號看\(\dfrac{y}{x}\))
特殊角的三角函數值表
利用三角函數的定義求\(\alpha=0, \dfrac{\pi}{2}, \pi, 2 \pi\)時對應的三角函數值.
\({\color{Red}{ Eg } }\) 如圖所示,\(α=π\)的終邊在\(x\)軸的負半軸,與\(x\)軸交點為\(P(-1,0)\),
則\(\sin π=0\),\(\cosπ=-1\),\(\tanπ=0\).
同角三角函數基本關系式
\(\sin^2 α+\cos^2 α=1\) \(\tan \alpha=\dfrac{\sin \alpha}{\cos \alpha}\)
\({\color{Red}{ 拓展 } }\) \((\sin α+\cos α)^2=1+2\sin α\cos α\);
\((\sin α-\cos α)^2=1-2\sin α\cos α\).
經典例題
【題型一】求三角函數值
【典題1】 已知角\(α\)的終邊與單位圓的交點為\(P\left(-\dfrac{4}{5}, \dfrac{3}{5}\right)\),則\(2\sinα+\tanα=\) \(\underline{\quad \quad}\) .
【解析】 角\(α\)的終邊與單位圓的交點為\(P\left(-\dfrac{4}{5}, \dfrac{3}{5}\right)\),
則\(\sin \alpha=\dfrac{3}{5}\),\(\tan \alpha=-\dfrac{3}{4}\),
則\(2 \sin \alpha+\tan \alpha=\dfrac{6}{5}-\dfrac{3}{4}=\dfrac{9}{20}\).
【典題2】 已知角\(θ\)的始邊為\(x\)軸非負半軸,終邊經過點\(P(1,2)\),則\(\dfrac{\sin \theta}{\sin \theta+\cos \theta}=\) \(\underline{\quad \quad}\) .
【解析】 \(∵\)角\(θ\)的始邊為\(x\)軸非負半軸,終邊經過點\(P(1,2)\),
\(∴tanθ=2\),
則\(\dfrac{\sin \theta}{\sin \theta+\cos \theta}=\dfrac{\tan \theta}{\tan \theta+1}=\dfrac{2}{2+1}=\dfrac{2}{3}\)
【點撥】
① \(P(1,2)\)不在單位圓上,故\(\sin θ≠2,\cos θ≠1\).
② 設\(α\)是任意角,它的終邊上任意一點\(P(x,y)\),它與原點的距離是\(r\),
則\(\sin \alpha=\dfrac{y}{r}\),\(\cos \alpha=\dfrac{x}{r}\),\(\tan \alpha=\dfrac{y}{x}\).
【題型二】確認三角函數的符號
【典題1】 \(\sin 2 \cdot \cos 3\cdot \tan 4\)的值( )
A.小於0 \(\qquad \qquad \qquad\) B.大於0 \(\qquad \qquad \qquad\) C.等於0 \(\qquad \qquad \qquad\) D.不存在
【解析】 因為\(\dfrac{\pi}{2}<2<\pi\),\(\dfrac{\pi}{2}<3<\pi\),\(\pi<4<\dfrac{3 \pi}{2}\),
所以\(2、3\)是第二象限角,4是第三象限角,
所以\(\sin 2>0\),\(\cos 3<0\),\(\tan 4>0\),
從而\(\sin 2 \cdot \cos 3\cdot \tan 4\),選\(A\).
【典題2】若\(\cos θ<0\)且\(\tan θ<0\),則\(\dfrac{\theta}{2}\)終邊在( )
A.第一象限 \(\qquad \qquad\) B.第二象限 \(\qquad \qquad\) C.第一或第三象限 \(\qquad \qquad\) D.第三或第四象限
【解析】 \(∵\cos θ<0\), \(∴θ\)是第二或三象限,
\(∵\tan θ<0\),\(∴θ\)是第二或四象限,
\(∴θ\)是第二象限,即\(2 k \pi+\dfrac{\pi}{2}<\theta<2 k \pi+\pi\),
\(\therefore k \pi+\dfrac{\pi}{4}<\dfrac{\theta}{2}<k \pi+\dfrac{\pi}{2}\),
\(∴\)可得\(\dfrac{\theta}{2}\)終邊在第一或第三象限.故選:\(C\).
【題型三】同角三角函數基本關系式
【典題1】 已知\(α∈(0,π)\),\(\tan α=-2\),則\(\cos \alpha=\) \(\underline{\quad \quad}\) .
【解析】 \({\color{Red}{ 方法1 } }\)
\(∵\tan α=-2\),\(\therefore \dfrac{\sin \alpha}{\cos \alpha}=-2\),即\(\sin \alpha=-2 \cos \alpha\),
又\(\sin ^{2} \alpha+\cos ^{2} \alpha=1 \Rightarrow \cos \alpha=\pm \dfrac{\sqrt{5}}{5}\),
\(∵α∈(0,π)\),且\(\tan \alpha=-2<0\),
\(∴α\)為第二象限角,\(\therefore \cos \alpha<0\),
\(\therefore \cos \alpha=-\dfrac{\sqrt{5}}{5}\).
\({\color{Red}{ 方法2 } }\) \(∵\tan α=-2\) ,構造直角三角形\(R t \Delta A B C\)如下圖,

在直角三角形中,\(\cos \alpha=\dfrac{B C}{A C}=\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\),
\(∵α∈(0,π)\),且\(\tan \alpha=-2<0\)
\(∴α\)為第二象限角,
\(\therefore \cos \alpha<0\) \(\therefore \cos \alpha=-\dfrac{\sqrt{5}}{5}\).
【點撥】
① 若知\(\sin \alpha, \cos \alpha, \tan \alpha\)三者中一個的值,可求另外兩個的值,即“知一得二”;
② 在非解答題中用方法二解題速度更快些,只是要多留意三角函數的符號.
【典題2】已知\(\sin \theta, \cos \theta\)是關於\(x\)的方程\(x^{2}-2 \sqrt{2} a x+a=0\)的兩個根.
(1)求實數\(a\)的值;
(2)若\(\theta \in\left(-\dfrac{\pi}{2}, 0\right)\),求\(\sin \theta-\cos \theta\)的值.
【解析】 (1)\(∵\sin \theta, \cos \theta\)是關於\(x\)的方程\(x^{2}-2 \sqrt{2} a x+a=0\)的兩個根,
\(\therefore \sin \theta+\cos \theta=2 \sqrt{2} a\) ①,\(\sin \theta \cos \theta=a\) ②,
\(△=b^2-4ac=8a^2-4a≥0\),
即\(a≤0\)或\(a \geq \dfrac{1}{2}\),
\(\therefore(\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cos \theta=1+2 a=8 a^{2}\),
即\(8a^2-2a-1=0\),解得\(a=-\dfrac{1}{4}\)或\(\dfrac{1}{2}\).
(2)\(\because \theta \in\left(-\dfrac{\pi}{2}, 0\right)\),
\(\therefore \sin \theta<0, \quad \cos \theta>0\),
可得\(\sin \theta \cos \theta=a<0\),
由(1)可得\(a=-\dfrac{1}{4}\),
\(\therefore \sin \theta \cos \theta=-\dfrac{1}{4}\),
\(\therefore(\sin \theta-\cos \theta)^{2}=1-2 \sin \theta \cos \theta=1+\dfrac{1}{2}=\dfrac{3}{2}\),
又\(\sin \theta-\cos \theta<0\)
\(\therefore \sin \theta-\cos \theta=-\dfrac{\sqrt{6}}{2}\).
(注意判斷\(\sin \theta-\cos \theta\)的正負)
【點撥】
① \((\sin α+\cos α)^2=1+2\sin α\cos α\); $ (\sin α-\cos α)^2=1-2\sin α\cos α$.
② \(\sin \theta+\cos \theta\)、\(\sin \theta-\cos \theta\)、\(\sin \theta\cos \theta\)也是“知一得二”.
【典題3】已知\(\tan α\)是關於\(x\)的方程\(2x^2-x-1=0\)的一個實根,且\(α\)是第三象限角.
(1) 求\(\dfrac{2 \sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}\)的值;
(2) 求\(3 \sin ^{2} \alpha-\sin \alpha \cos \alpha+2 \cos ^{2} \alpha\)的值.
【解析】 (1)\(\because \tan \alpha\)是關於\(x\)的方程\(2x^2-x-1=0\)的一個實根,且\(α\)是第三象限角,
\(\therefore \tan \alpha=1\)或\(\tan \alpha=-\dfrac{1}{2}\)(舍去),
\(\therefore \dfrac{2 \sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}=\dfrac{2 \tan \alpha-1}{\tan \alpha+1}=\dfrac{1}{2}\).
(2)\(3 \sin ^{2} \alpha-\sin \alpha \cos \alpha+2 \cos ^{2} \alpha\)
\(=\dfrac{3 \sin ^{2} \alpha-\sin \alpha \cos \alpha+2 \cos ^{2} \alpha}{\sin ^{2} \alpha+\cos ^{2} \alpha}\)
\(=\dfrac{3 \tan ^{2} \alpha-\tan \alpha+2}{\tan ^{2} \alpha+1}\)
\(=\dfrac{3-1+2}{2}=2\)
【點撥】
① 弦化切技巧
若已知\(\tan \alpha\),可求\(\dfrac{a \cdot \sin \alpha+b \cdot \cos \alpha}{c \cdot \sin \alpha+d \cdot \cos \alpha}\)或\(\dfrac{a \cdot \sin ^{2} \alpha+b \cdot \sin \alpha \cos \alpha+c \cdot \cos ^{2} \alpha}{d \cdot \sin ^{2} \alpha+e \cdot \sin \alpha \cos \alpha+f \cdot \cos ^{2} \alpha}\)分子分母齊次的形式,可分子分母同
除以\(\cos \alpha\)或\(\cos ^{2} \alpha\),化為關於\(\tan \alpha\)的式子.
② 本題巧妙利用了\(\sin ^{2} \alpha+\cos ^{2} \alpha=1\),當遇到類似\(3 \sin ^{2} \alpha-\sin \alpha \cos \alpha+2 \cos ^{2} \alpha\)化為分子分母齊次的形式.對\(\sin ^{2} \alpha+\cos ^{2} \alpha=1\)的巧用要注意.
③ 本題若是選擇填空題當然也可以通過\(\tan \alpha=1\),求出\(\sin \alpha\)、\(\cos \alpha\)的值,容易想到且計算量也不大,值得考慮.
【典題4】 已知\(3 \sin \alpha+4 \cos \alpha=5\),求\(\tan \alpha\).
【解析】 \({\color{Red}{ 方法1 \quad 解方程組法 } }\)
由\(\left\{\begin{array}{l} 3 \sin \alpha+4 \cos \alpha=5 \\ \sin ^{2} \alpha+\cos ^{2} \alpha=1 \end{array}\right.\)
得\(25 \sin ^{2} \alpha-30 \sin \alpha+9=0\),
解得\(\sin \alpha=\dfrac{3}{5}\),
\(\therefore \cos \alpha=\dfrac{4}{5}\) \(\therefore \tan \alpha=\dfrac{3}{4}\).
\({\color{Red}{ 方法2 \quad “對偶式”法 } }\)
設\(4 \sin \alpha-3 \cos \alpha=x\),等式兩邊平方得\(16 \sin ^{2} \alpha-24 \sin \alpha \cos \alpha+9 \cos ^{2} \alpha=x^{2}\) ①
將\(3 \sin \alpha+4 \cos \alpha=5\)兩邊平方,得\(9 \sin ^{2} \alpha+24 \sin \alpha \cos \alpha+16 \cos ^{2} \alpha=25\) ②
由①+②得,\(25=x^2+25\),解得\(x=0\),
\(\therefore 4 \sin \alpha-3 \cos \alpha=0\)
\(\therefore \tan \alpha=\dfrac{3}{4}\)
\({\color{Red}{ 方法3 \quad “弦化切”法 } }\)
將\(3 \sin \alpha+4 \cos \alpha=5\)兩邊平方,得\(9 \sin ^{2} \alpha+24 \sin \alpha \cos \alpha+16 \cos ^{2} \alpha=25\)
即\(\dfrac{9 \sin ^{2} \alpha+24 \sin \alpha \cos \alpha+16 \cos ^{2} \alpha}{\sin ^{2} \alpha+\cos ^{2} \alpha}=25\),
即\(\dfrac{9 \tan ^{2} \alpha+24 \tan \alpha+16}{\tan ^{2} \alpha+1}=25\),
解得\(\tan \alpha=\dfrac{3}{4}\).
鞏固練習
1(★) 已知角\(α\)的項點與坐標原點重合,始邊與\(x\)軸的非負半軸重合,若點\(P(2,-1)\)在角\(α\)的終邊上,則\(\tanα=\)( )
A.\(2\)\(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C\(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\)D.\(-2\)
2(★)若\(θ\)為第二象限角,則下列結論一定成立的是( )
A.\(\sin \dfrac{\theta}{2}>0\) \(\qquad \qquad\) B.\(\cos \dfrac{\theta}{2}>0\) \(\qquad \qquad\) C.\(\tan \dfrac{\theta}{2}>0\) \(\qquad \qquad\) D.\(\sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2}<0\)
3(★) 已知\(\cos \alpha=-\dfrac{4}{5}\),且\(α\)為第二象限角,那么\(\tan \alpha=\) \(\underline{\quad \quad}\) .
4(★) 如果角\(θ\)滿足\(\sin \theta+\cos \theta=\sqrt{2}\),那\(\tan \theta+\dfrac{1}{\tan \theta}=\) \(\underline{\quad \quad}\) .
5(★★) 已知\(\alpha \in\left(\dfrac{\pi}{2}, \pi\right)\),且\(\sin \alpha+\cos \alpha=\dfrac{1}{5}\),則\(\sin \alpha-\cos \alpha=\) \(\underline{\quad \quad}\) .
6(★★) 若\(\alpha \in\left(\dfrac{\pi}{2}, \pi\right)\),且\(\cos ^{2} \alpha-\sin \alpha=\dfrac{1}{4}\),則\(\tan \alpha=\) \(\underline{\quad \quad}\) .
7(★★)已知\(\tan \alpha=2\),則\(\dfrac{1}{\sin ^{2} \alpha-\cos ^{2} \alpha}=\) \(\underline{\quad \quad}\) .
8(★★)若\(\cos \theta-2 \sin \theta=1\),則\(\tan \theta=\) \(\underline{\quad \quad}\).
挑戰學霸
若\(0<x<\dfrac{\pi}{2}\),證明\(\sin x<x<\tan x\).
答案
- \(C\)
- \(C\)
- \(-\dfrac{3}{4}\)
- \(2\)
- \(\dfrac{7}{5}\)
- \(-\dfrac{\sqrt{3}}{3}\)
- \(\dfrac{5}{3}\)
- \(0\)或\(\dfrac{4}{3}\)
【挑戰學霸】
解 如上圖,在單位圓中,\(\sin x=A B\) ̂,\(\tan x=C D\),\(x=\widehat{A D}\),
顯然\(\sin x<x<\tan x\).

