假設檢驗中的兩類錯誤


假設:

H0:You are not pregnant
H1:You are pregnant

 

Type I and type II errors - wiki

type I error is the rejection of a true nullhypothesis (also known as a "false positive" finding), (假陽性)

type II error is failing to reject a false null hypothesis (also known as a "false negative" finding). (假陰性)

我們要構建零假設,這就是我們要攻擊的目標,我們需要使用我們的數據來拒絕它。

常見的做法是我們需要構建統計量,在H0的假設下,統計量往往有一個分布,當我們計算出統計量處於分布的小概率區域中時,我們就可以說零假設是小概率事件,可以拒絕零假設。

如下圖的單側假設檢驗,當統計量大於2時,我們就可以拒絕H0,此時我們犯第一類錯誤地概率就是α,就是零假設是真的,我們卻拒絕了它。

當設定了顯著性水平后,α就定了,一般為0.05,所以統計量水平也就定了,下圖為2. 第二類錯誤就是,即使沒有達到拒絕H0的標准(統計量小於2),但是其實H1是真的,我們卻拒絕了它。定義為β。也可以叫做我們接受了錯誤地H0。

 

結論:

第一類錯誤:錯誤地拒絕了H0

第二類錯誤:錯誤地拒絕了H1,換句話說,錯誤地接受了H0,接受了假的H0,真的很繞口,但是確實一個東西。

與wiki定義完美吻合!!!

 

 

參考:

https://www.cnblogs.com/leezx/p/9226078.html

https://www.zhihu.com/question/20993864

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM