【14】利用函數的凹凸性證明一道積分不等式


問題:\(\displaystyle f\left( x \right)\)\(\displaystyle \left( 0,1 \right)\)上二階可導,\(\displaystyle f''\left( x \right) >0\)\(\displaystyle f\left( 0 \right) =0\),求證:

\[\int_0^1{xf\left( x \right) \text{d}x}\geqslant \frac{2}{3}\int_0^1{f\left( x \right) \text{d}x} \]


過程如下:由於\(\displaystyle f''\left( x \right) >0\),所以有

\[\frac{f\left( x \right) +f\left( 0 \right)}{2}\geqslant \frac{\int_0^x{f\left( t \right) \text{d}t}}{x} \]

\[xf\left( x \right) \geqslant 2\int_0^x{f\left( t \right) \text{d}t} \]

對上式左右兩邊同時對\(\displaystyle x\)在0到1上積分,得到

\[\begin{align*} \int_0^1{xf\left( x \right) \text{d}x}&\geqslant 2\int_0^1{\left( \int_0^x{f\left( t \right) \text{d}t} \right) \text{d}x} \\ &=2x\int_0^x{f\left( t \right) \text{d}t}\mid_{0}^{1}-2\int_0^1{xf\left( x \right) \text{d}x} \\ &=2\int_0^1{f\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x} \end{align*} \]

移項從而得到

\[\int_0^1{xf\left( x \right) \text{d}x}\geqslant \frac{2}{3}\int_0^1{f\left( x \right) \text{d}x} \]


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM