已知$a,b,c\in\mathrm{R},a+b+c=0,abc=1.\;\;(1)$證明:$ab+bc+ca<0;(2)$證明:$max\{a,b,c\}\geqslant\sqrt[3]{4}.$
(1)法一:$2(ab+bc+ca)=(a+b+c)2-(a2+b2+c2)=0-(a2+b2+c^2)<0 $(貴老師的)
法二:
情況\ding{192}當\(c<0\)時,此時\(a+b=-c>0,ab=\frac{1}{c}<0,\)
\(\Rightarrow ab+bc+ca=ab+(a+b)c=ab-(a+b)^2<0\)
情況\ding{193}當\(c>0\)時,此時\(a+b=-c<0,ab=\frac{1}{c}>0,\Rightarrow \frac{1}{ab}=(-a)+(-b)\geqslant 2\sqrt{ab}\Rightarrow (\sqrt{ab})^3\leqslant \frac{1}{2}\Rightarrow ab<1\)
\(\Rightarrow ab+bc+ca=ab+(a+b)c=ab+\frac{(a+b)}{ab}=ab-\frac{1}{a^2b^2}=\frac{a^3b^3-1}{a^2b^2}=\frac{(ab-1)(a^2b^2+ab+1)}{a^2b^2}<0\)
(2)法一:由題可知\(a,b,c\)為一正兩負,不妨設\(a>0,b<0,c<0,\)那么
\(\Rightarrow (a+b)ab+1=0\Rightarrow a^2+ab+\frac{1}{b}=0\)
構造函數\(f(x)=x^2+bx+\frac{1}{b},\)那么方程\(f(x)=0\)有兩個根\(x_1<0<x_2=a\)
而\(f(\sqrt[3]{4})=(\sqrt[3]{4})^2-(\sqrt[3]{4}(-b)+\frac{1}{-b})\leqslant (\sqrt[3]{4})^2-2\sqrt{\sqrt[3]{4}}=2^{\frac{4}{3}}-2^{\frac{4}{3}}=0\)
\(\Rightarrow a\geqslant \sqrt[3]{4}\)
法二:(吳老師的)由題可知\(a,b,c\)為一正兩負,不妨設\(a>0,b<0,c<0,\)那么
\(a=(-b)+(-c),a=\frac{1}{bc}\)
\(\Rightarrow a=(-b)+(-c)\geqslant 2\sqrt{bc}\)
\(\Rightarrow a^2\geqslant 4\frac{1}{a}\)
\(\Rightarrow a\geqslant \sqrt[3]{4}\)