圓周角定理


圓周角定理指的是一條弧所對圓周角等於它所對圓心角的一半。這一定理叫做圓周角定理。該定理反映的是圓周角圓心角的關系。

https://baike.baidu.com/item/%E5%9C%86%E5%91%A8%E8%A7%92%E5%AE%9A%E7%90%86

已知在⊙O中,∠BOC與圓周角∠BAC同對弧BC,求證:∠BOC=2∠BAC.
證明:
情況1:
如圖1,當圓心O在∠BAC的一邊上時,即A、O、B在同一直線上時:
圖1 圖1
∵OA、OC是半徑
解:∴OA=OC
∴∠BAC=∠ACO( 等邊對等角
∵∠BOC是△AOC的 外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情況2:
如圖2,,當圓心O在∠BAC的內部時:
連接AO,並延長AO交⊙O於D
圖2 圖2
∵OA、OB、OC是半徑
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等邊對等角)
∵∠BOD、∠COD分別是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等於兩個不相鄰兩個 內角的和)
∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等於兩個不相鄰兩個內角的和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM