【轉】矩陣的本質和意義是什么


下文是節選自 [遇見數學] 發布過的《「圖解線性代數」-以動畫方式輕松理解線性代數的本質與幾何意義》一文.


線性變換是線性空間中的運動, 而矩陣就是用來描述這種變換的映射, 可以這樣說矩陣的本質就是映射!

 

這樣說還是沒有直觀印象, 所以還是直接看圖解的動畫吧.

矩陣不僅僅只是數值的表:

其實表示了在該矩陣的作用下, 線性空間是怎樣的變化, 觀察下圖二維平面中水平和垂直方向的伸縮過程:

從上面動畫中可以觀察到:

  • 垂直方向並沒有發生任何變換(A 的第二列沒有變化);

  • 水平方向伸展了 2 倍;

  • 淺紅色方格在變換后面積變成了原來的 2 倍,這里其實就是行列式的意義 - 面積的擴張倍率 Det(A)=2

再看到更多矩陣變換之前, 先停下來看看下面靜態圖片的進一步解釋:

變換前矩陣的基底向量 i (1,0) 移動到了 (2,0) 的位置, 而 j 基底向量 (0,1) 還是 (0,1) 沒發生任何變換(移動) - 也就是基底的變化:

一旦明白了基底的變化, 那么整個線性變換也就清楚了 - 因為所有向量的變化都可以由改變后的基向量線性表出. 觀察下面紅色向量(1, 1.5) 和 綠色向量(-1, -3) 變換后落腳的位置:

向量 (1, 1.5) 在變換后的位置, 其實就是變換后基向量的線性表示, 也可以看到矩陣的乘法是如何計算的:

類似對於(-1, -3) 變換后的位置 , 也是一樣的計算方法:

可以再次觀察上面動畫來體會, 驗證算出的結果.

下面再看其他的變換矩陣

這里矩陣 A 的對角線中(0,2)含有一個 0 的情況, 觀察下面動畫 :

可以看到:

  • 水平方向變為 0 倍;

  • 垂直方向被拉伸為 2 倍;

  • 面積的變化率為 0 倍, 也就是 Det(A) = 0;

基底的變化如下:

再看看下面這個矩陣 A 的變換:

可以看到:

  • 整個空間向左傾斜轉動;

  • 面積放大為原來的 Det(A) = 3.5 倍;

上面在 3 個不同的矩陣作用下(相乘), 整個空間發生不同的變換, 但是原點沒有改變, 且直線依然還是直線, 平行的依然保持平行, 這就是線性變換的本質.

類似, 在三維線性空間內, 矩陣也用於這樣的線性變換, 需要注意的是這里行列式可以看成經過變換后體積變化的倍率. 觀察下圖, 經過下面矩陣 A 的變換中, 空間會經過鏡像翻轉變換(扁平化為線), 所以行列式的值會是負數.

(完)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM