深入淺出:矩陣的本質是什么(下)
(一)
如果不熟悉線性代數的概念,要去學習自然科學,現在看來就和文盲差不多。”,然而“按照現行的國際標准,線性代數是通過公理化來表述的,它是第二代數學模型,這就帶來了教學上的困難。”
* 矩陣究竟是什么東西?
向量可以被認為是具有n個相互獨立的性質(維度)的對象的表示,矩陣又是什么呢?我們如果認為矩陣是一組列(行)向量組成的新的復合向量的展開式,那么為什么這種展開式具有如此廣泛的應用?特別是,為什么偏偏二維的展開式如此有用?如果矩陣中每一個元素又是一個向量,那么我們再展開一次,變成三維的立方陣,是不是更有用?
* 矩陣的乘法規則究竟為什么這樣規定?
為什么這樣一種怪異的乘法規則卻能夠在實踐中發揮如此巨大的功效?很多看上去似乎是完全不相關的問題,最后竟然都歸結到矩陣的乘法,這難道不是很奇妙的事情?難道在矩陣乘法那看上去莫名其妙的規則下面,包含着世界的某些本質規律?如果是的話,這些本質規律是什么?
* 行列式究竟是一個什么東西?
為什么會有如此怪異的計算規則?行列式與其對應方陣本質上是什么關系?為什么只有方陣才有對應的行列式,而一般矩陣就沒有(不要覺得這個問題很蠢,如果必要,針對m x n矩陣定義行列式不是做不到的,之所以不做,是因為沒有這個必要,但是為什么沒有這個必要)?而且,行列式的計算規則,看上去跟矩陣的任何計算規則都沒有直觀的聯系,為什么又在很多方面決定了矩陣的性質?難道這一切僅是巧合?
* 矩陣為什么可以分塊計算?
分塊計算這件事情看上去是那么隨意,為什么竟是可行的?
* 對於矩陣轉置運算AT,有(AB)T = (B)T(A)T,對於矩陣求逆運算A-1,有(AB)-1 = (B)-1(A)-1。兩個看上去完全沒有什么關系的運算,為什么有着類似的性質?這僅僅是巧合嗎?
* 為什么說P-1AP得到的矩陣與A矩陣“相似”?這里的“相似”是什么意思?
* 特征值和特征向量的本質是什么?
它們定義就讓人很驚訝,因為Ax =λx,一個諾大的矩陣的效應,竟然不過相當於一個小小的數λ,確實有點奇妙。但何至於用“特征”甚至“本征”來界定?它們刻划的究竟是什么?
今天先談談對線形空間和矩陣的幾個核心概念的理解。首先說說空間(space),這個概念是現代數學的命根子之一,從拓撲空間開始,一步步往上加定義,可以形成很多空間。線形空間其實還是比較初級的,如果在里面定義了范數,就成了賦范線性空間。賦范線性空間滿足完備性,就成了巴那赫空間;賦范線性空間中定義角度,就有了內積空間,內積空間再滿足完備性,就得到希爾伯特空間。
總之,空間有很多種。你要是去看某種空間的數學定義,大致都是“存在一個集合,在這個集合上定義某某概念,然后滿足某些性質”,就可以被稱為空間。這未免有點奇怪,為什么要用“空間”來稱呼一些這樣的集合呢?大家將會看到,其實這是很有道理的。
我們一般人最熟悉的空間,毫無疑問就是我們生活在其中的(按照牛頓的絕對時空觀)的三維空間,從數學上說,這是一個三維的歐幾里德空間,我們先不管那么多,先看看我們熟悉的這樣一個空間有些什么最基本的特點。仔細想想我們就會知道,這個三維的空間:1. 由很多(實際上是無窮多個)位置點組成;2. 這些點之間存在相對的關系;3. 可以在空間中定義長度、角度;4. 這個空間可以容納運動,這里我們所說的運動是從一個點到另一個點的移動(變換),而不是微積分意義上的“連續”性的運動,事實上,不管是什么空間,都必須容納和支持在其中發生的符合規則的運動(變換)。你會發現,在某種空間中往往會存在一種相對應的變換,比如拓撲空間中有拓撲變換,線性空間中有線性變換,仿射空間中有仿射變換,其實這些變換都只不過是對應空間中允許的運動形式而已。
因此只要知道,“空間”是容納運動的一個對象集合,而變換則規定了對應空間的運動。
下面我們來看看線性空間。線性空間的定義任何一本書上都有(線性空間是這樣一種集合,其中任意兩元素相加可構成此集合內的另一元素,任意元素與任意數(可以是實數也可以是復數,也可以是任意給定域中的元素)相乘后得到此集合內的另一元素。),但是既然我們承認線性空間是個空間,那么有兩個最基本的問題必須首先得到解決,那就是:
1. 空間是一個對象集合,線性空間也是空間,所以也是一個對象集合。那么線性空間是什么樣的對象的集合?或者說,線性空間中的對象有什么共同點嗎?
2. 線性空間中的運動如何表述的?也就是,線性變換是如何表示的?
我們先來回答第一個問題,回答這個問題的時候其實是不用拐彎抹角的,可以直截了當的給出答案。線性空間中的任何一個對象,通過選取基和坐標的辦法,都可以表達為向量的形式。通常的向量空間我就不說了,舉兩個不那么平凡的例子:
L1. 最高次項不大於n次的多項式的全體構成一個線性空間,也就是說,這個線性空間中的每一個對象是一個多項式。如果我們以x0, x1, ...,xn為基,那么任何一個這樣的多項式都可以表達為一組n+1維向量,其中的每一個分量ai其實就是多項式中x(i-1)項的系數。值得說明的是,基的選取有多種辦法,只要所選取的那一組基線性無關就可以。這要用到后面提到的概念了,所以這里先不說,提一下而已。
L2. 閉區間[a, b]上的n階連續可微函數的全體,構成一個線性空間。也就是說,這個線性空間的每一個對象是一個連續函數。對於其中任何一個連續函數,根據魏爾斯特拉斯定理,一定可以找到最高次項不大於n的多項式函數,使之與該連續函數的差為0,也就是說,完全相等。這樣就把問題歸結為L1了。后面就不用再重復了。
所以說,向量是很厲害的,只要你找到合適的基,用向量可以表示線性空間里任何一個對象。這里頭大有文章,因為向量表面上只是一列數,但是其實由於它的有序性,所以除了這些數本身攜帶的信息之外,還可以在每個數的對應位置上攜帶信息。為什么在程序設計中數組最簡單,卻又威力無窮呢?根本原因就在於此。這是另一個問題了,這里就不說了。
下面來回答第二個問題,這個問題的回答會涉及到線性代數的一個最根本的問題。
線性空間中的運動,被稱為線性變換。也就是說,你從線性空間中的一個點運動到任意的另外一個點,都可以通過一個線性變化來完成。那么,線性變換如何表示呢?很有意思,在線性空間中,當你選定一組基之后,不僅可以用一個向量來描述空間中的任何一個對象,而且可以用矩陣來描述該空間中的任何一個運動(變換)。而使某個對象發生對應運動的方法,就是用代表那個運動的矩陣,乘以代表那個對象的向量。
簡而言之,在線性空間中選定基之后,向量刻畫對象,矩陣刻畫對象的運動,用矩陣與向量的乘法施加運動。
是的,矩陣的本質是運動的描述。如果以后有人問你矩陣是什么,那么你就可以響亮地告訴他,矩陣的本質是運動的描述。
可是多么有意思啊,向量本身不是也可以看成是n x 1矩陣嗎?這實在是很奇妙,一個空間中的對象和運動竟然可以用相類同的方式表示。能說這是巧合嗎?如果是巧合的話,那可真是幸運的巧合!可以說,線性代數中大多數奇妙的性質,均與這個巧合有直接的關系。
“矩陣是運動的描述”,到現在為止,好像大家都還沒什么意見。但是我相信早晚會有數學系出身的網友來拍板轉。因為運動這個概念,在數學和物理里是跟微積分聯系在一起的。我們學習微積分的時候,總會有人照本宣科地告訴你,初等數學是研究常量的數學,是研究靜態的數學,高等數學是變量的數學,是研究運動的數學。大家口口相傳,差不多人人都知道這句話。但是真知道這句話說的是什么意思的人,好像也不多。簡而言之,在我們人類的經驗里,運動是一個連續過程,從A點到B點,就算走得最快的光,也是需要一個時間來逐點地經過AB之間的路徑,這就帶來了連續性的概念。而連續這個事情,如果不定義極限的概念,根本就解釋不了。古希臘人的數學非常強,但就是缺乏極限觀念,所以解釋不了運動,被芝諾的那些著名悖論(飛箭不動、飛毛腿阿喀琉斯跑不過烏龜等四個悖論)搞得死去活來。因為這篇文章不是講微積分的,所以我就不多說了。有興趣的讀者可以去看看齊民友教授寫的《重溫微積分》。我就是讀了這本書開頭的部分,才明白“高等數學是研究運動的數學”這句話的道理。
不過在我這個《理解矩陣》的文章里,“運動”的概念不是微積分中的連續性的運動,而是瞬間發生的變化。比如這個時刻在A點,經過一個“運動”,一下子就“躍遷”到了B點,其中不需要經過A點與B點之間的任何一個點。這樣的“運動”,或者說“躍遷”,是違反我們日常的經驗的。不過了解一點量子物理常識的人,就會立刻指出,量子(例如電子)在不同的能量級軌道上跳躍,就是瞬間發生的,具有這樣一種躍遷行為。所以說,自然界中並不是沒有這種運動現象,只不過宏觀上我們觀察不到。但是不管怎么說,“運動”這個詞用在這里,還是容易產生歧義的,說得更確切些,應該是“躍遷”。因此這句話可以改成:
“矩陣是線性空間里躍遷的描述”。
可是這樣說又太物理,也就是說太具體,而不夠數學,也就是說不夠抽象。因此我們最后換用一個正牌的數學術語——變換,來描述這個事情。這樣一說,大家就應該明白了,所謂變換,其實就是空間里從一個點(元素/對象)到另一個點(元素/對象)的躍遷。比如說,拓撲變換,就是在拓撲空間里從一個點到另一個點的躍遷。再比如說,仿射變換,就是在仿射空間里從一個點到另一個點的躍遷。附帶說一下,這個仿射空間跟向量空間是親兄弟。做計算機圖形學的朋友都知道,盡管描述一個三維對象只需要三維向量,但所有的計算機圖形學變換矩陣都是4 x 4的。說其原因,很多書上都寫着“為了使用中方便”,這在我看來簡直就是企圖蒙混過關。真正的原因,是因為在計算機圖形學里應用的圖形變換,實際上是在仿射空間而不是向量空間中進行的。想想看,在向量空間里相一個向量平行移動以后仍是相同的那個向量,而現實世界等長的兩個平行線段當然不能被認為同一個東西,所以計算機圖形學的生存空間實際上是仿射空間。而仿射變換的矩陣表示根本就是4 x 4的。又扯遠了,有興趣的讀者可以去看《計算機圖形學——幾何工具算法詳解》。
一旦我們理解了“變換”這個概念,矩陣的定義就變成:
“矩陣是線性空間里的變換的描述。”
到這里為止,我們終於得到了一個看上去比較數學的定義。不過還要多說幾句。教材上一般是這么說的,在一個線性空間V里的一個線性變換T,當選定一組基之后,就可以表示為矩陣。因此我們還要說清楚到底什么是線性變換,什么是基,什么叫選定一組基。線性變換的定義是很簡單的,設有一種變換T,使得對於線性空間V中間任何兩個不相同的對象x和y,以及任意實數a和b,有:T(ax + by)=aT(x) + bT(y),那么就稱T為線性變換。
定義都是這么寫的,但是光看定義還得不到直覺的理解。線性變換究竟是一種什么樣的變換?我們剛才說了,變換是從空間的一個點躍遷到另一個點,而線性變換,就是從一個線性空間V的某一個點躍遷到另一個線性空間W的另一個點的運動。這句話里蘊含着一層意思,就是說一個點不僅可以變換到同一個線性空間中的另一個點,而且可以變換到另一個線性空間中的另一個點去。不管你怎么變,只要變換前后都是線性空間中的對象,這個變換就一定是線性變換,也就一定可以用一個非奇異矩陣來描述。而你用一個非奇異矩陣去描述的一個變換,一定是一個線性變換。有的人可能要問,這里為什么要強調非奇異矩陣?所謂非奇異,只對方陣有意義,(定義:若n階矩陣A的行列式不為零,即 |A|≠0,則稱A為非奇異矩陣或滿秩矩陣,否則稱A為奇異矩陣或降秩矩陣。n 階方陣 A 是非奇異方陣的充要條件是 A 為可逆矩陣,也即A的行列式不為零。即矩陣(方陣)A可逆與矩陣A非奇異是等價的概念。)那么非方陣的情況怎么樣?這個說起來就會比較冗長了,最后要把線性變換作為一種映射,並且討論其映射性質,以及線性變換的核與像等概念才能徹底講清楚。我覺得這個不算是重點,如果確實有時間的話,以后寫一點。以下我們只探討最常用、最有用的一種變換,就是在同一個線性空間之內的線性變換。也就是說,下面所說的矩陣,不作說明的話,就是方陣,而且是非奇異方陣。學習一門學問,最重要的是把握主干內容,迅速建立對於這門學問的整體概念,不必一開始就考慮所有的細枝末節和特殊情況,自亂陣腳。
接着往下說,什么是基呢?這個問題在后面還要大講一番,這里只要把基看成是線性空間里的坐標系就可以了。注意是坐標系,不是坐標值,這兩者可是一個“對立矛盾統一體”。這樣一來,“選定一組基”就是說在線性空間里選定一個坐標系。就這意思。
好,最后我們把矩陣的定義完善如下:
“矩陣是線性空間中的線性變換的一個描述。在一個線性空間中,只要我們選定一組基,那么對於任何一個線性變換,都能夠用一個確定的矩陣來加以描述。”
理解這句話的關鍵,在於把“線性變換”與“線性變換的一個描述”區別開。一個是那個對象,一個是對那個對象的表述。就好像我們熟悉的面向對象編程中,一個對象可以有多個引用,每個引用可以叫不同的名字,但都是指的同一個對象。如果還不形象,那就干脆來個很俗的類比。
比如有一頭豬,你打算給它拍照片,只要你給照相機選定了一個鏡頭位置,那么就可以給這頭豬拍一張照片。這個照片可以看成是這頭豬的一個描述,但只是一個片面的的描述,因為換一個鏡頭位置給這頭豬拍照,能得到一張不同的照片,也是這頭豬的另一個片面的描述。所有這樣照出來的照片都是這同一頭豬的描述,但是又都不是這頭豬本身。
同樣的,對於一個線性變換,只要你選定一組基,那么就可以找到一個矩陣來描述這個線性變換。換一組基,就得到一個不同的矩陣。所有這些矩陣都是這同一個線性變換的描述,但又都不是線性變換本身。
但是這樣的話,問題就來了如果你給我兩張豬的照片,我怎么知道這兩張照片上的是同一頭豬呢?同樣的,你給我兩個矩陣,我怎么知道這兩個矩陣是描述的同一個線性變換呢?如果是同一個線性變換的不同的矩陣描述,那就是本家兄弟了,見面不認識,豈不成了笑話。
好在,我們可以找到同一個線性變換的矩陣兄弟們的一個性質,那就是:
若矩陣A與B是同一個線性變換的兩個不同的描述(之所以會不同,是因為選定了不同的基,也就是選定了不同的坐標系),則一定能找到一個非奇異矩陣P,使得A、B之間滿足這樣的關系:
A = P^(-1) *B *P
線性代數稍微熟一點的讀者一下就看出來,這就是相似矩陣的定義。沒錯,所謂相似矩陣,就是同一個線性變換的不同的描述矩陣。按照這個定義,同一頭豬的不同角度的照片也可以成為相似照片。俗了一點,不過能讓人明白。
而在上面式子里那個矩陣P,其實就是A矩陣所基於的基與B矩陣所基於的基這兩組基之間的一個變換關系。
這個發現太重要了。原來一族相似矩陣都是同一個線性變換的描述啊!難怪這么重要!工科研究生課程中有矩陣論、矩陣分析等課程,其中講了各種各樣的相似變換,比如什么相似標准型,對角化之類的內容,都要求變換以后得到的那個矩陣與先前的那個矩陣式相似的,為什么這么要求?因為只有這樣要求,才能保證變換前后的兩個矩陣是描述同一個線性變換的。當然,同一個線性變換的不同矩陣描述,從實際運算性質來看並不是不分好環的。有些描述矩陣就比其他的矩陣性質好得多。這很容易理解,同一頭豬的照片也有美丑之分嘛。所以矩陣的相似變換可以把一個比較丑的矩陣變成一個比較美的矩陣,而保證這兩個矩陣都是描述了同一個線性變換。
這樣一來,矩陣作為線性變換描述的一面,基本上說清楚了。但是,事情沒有那么簡單,或者說,線性代數還有比這更奇妙的性質,那就是,矩陣不僅可以作為線性變換的描述,而且可以作為一組基的描述。而作為變換的矩陣,不但可以把線性空間中的一個點給變換到另一個點去,而且也能夠把線性空間中的一個坐標系(基)變換到另一個坐標系(基)去。而且,變換點與變換坐標系,具有異曲同工的效果。線性代數里最有趣的奧妙,就蘊含在其中。理解了這些內容,線性代數里很多定理和規則會變得更加清晰、直覺。
首先來總結一下前面兩部分的一些主要結論:
1. 首先有空間,空間可以容納對象運動的。一種空間對應一類對象。
2. 有一種空間叫線性空間,線性空間是容納向量對象運動的。
3. 運動是瞬時的,因此也被稱為變換。
4. 矩陣是線性空間中運動(變換)的描述。
5. 矩陣與向量相乘,就是實施運動(變換)的過程。
6. 同一個變換,在不同的坐標系下表現為不同的矩陣,但是它們的本質是一樣的,所以本征值相同。