Legendre公式
對於質數\(p\),函數\(v_p(n)\)為\(n\)標准分解后\(p\)的次數
顯然有
\[v_p(n!) = \sum\limits_{i = 1}^{\infty} \lfloor \frac{n}{p^i} \rfloor \]
令函數\(s_p(n)\)為\(n\)在\(p\)進制下的數位和
有:
\[v_p(n!) = \frac{n - s_p(n)}{p - 1} \]
證明:
設\(n = \sum\limits_{i = 0}^{\infty} c_i p^i\),
有\(v_p(n!) = \sum\limits_{i = 1}^{\infty} \lfloor \frac{n}{p^i} \rfloor\)
\(= \sum\limits_{i = 1}^{\infty} \sum\limits_{j = i}^{\infty} c_j p^{j - i}\)
\(= \sum\limits_{j = 1}^{\infty} c_j \sum\limits_{i = 0}^{j - 1} p^i\)
\(= \sum\limits_{j = 1}^{\infty} \frac{c_j(p^j - 1)}{p - 1}\)
\(= \frac{1}{p - 1} (\sum\limits_{i = 0}^{\infty} c_i p^i - \sum\limits_{i = 0}^{\infty} c_i)\)
$= \frac{n - s_p(n)}{p - 1} $
Kummer定理
二項式系數
\[v_p(\binom{n}{m}) = \frac{s_p(m) + s_p(n - m) - s_p(n)}{p - 1} \]
同時也等於在\(p\)進制下運算\(n - m\)時退位的次數
多項式系數
\(\binom{n}{m_1, \cdots, m_k} = \frac{n!}{m_1! \cdots m_k!}\)
\[v_p(\binom{n}{m_1, \cdots, m_k}) = \frac{\sum\limits_{i = 1}^k s_p(m_i) - s_p(n)}{p - 1} \]
