問題描述:
給定兩個序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y長度最長的公共子序列。(子序列中的字符不要求連續)
這道題可以用動態規划解決。定義c[i, j]表示Xi和Yj的LCS的長度,可得如下公式:
偽代碼如下:
C++實現:
int longestCommonSubsequence(string x, string y) { int m = x.length(); int n = y.length(); vector< vector<int> > c(m + 1, vector<int>(n + 1)); for (int i = 0; i <= m; ++i) c[i][0] = 0; for (int j = 1; j <= n; ++j) c[0][j] = 0; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (x[i-1] == y[j-1]) c[i][j] = c[i-1][j-1] + 1; else if (c[i-1][j] >= c[i][j-1]) c[i][j] = c[i-1][j]; else c[i][j] = c[i][j-1]; } } return c[m][n]; }
后記:
我本來以為我已經掌握了LCS,其實不過是記住了LCS的狀態轉移方程。15號參加了創新工場2016校園招聘筆試,題目要求打印出LCS,我就懵逼了。其實《算法導論》里講的清清楚楚啊。
貼一下我的C++實現:
vector< vector<int> > b; //輔助數組 void LCS(string x, string y) { int m = x.length(); int n = y.length(); vector< vector<int> > c(m + 1, vector<int>(n + 1)); for (int i = 0; i <= m; ++i) c[i][0] = 0; for (int j = 1; j <= n; ++j) c[0][j] = 0; b.resize(m+1); for (int i = 1; i <= m; i++) { b[i].resize(n+1); } for (int i = 1; i <= m; i++) for (int j = 1; j <= n; j++) { b[i][j] = 0; } for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (x[i-1] == y[j-1]) { c[i][j] = c[i-1][j-1] + 1; b[i][j] = 1; // } else if (c[i-1][j] >= c[i][j-1]) { c[i][j] = c[i-1][j]; b[i][j] = 2; // } else { c[i][j] = c[i][j-1]; b[i][j] = 3; // } } } } void printLCS(vector< vector<int> > &b, string x, int i, int j) { if (i == 0 || j == 0) return ; if (b[i][j] == 1) { printLCS(b, x, i-1, j-1); printf("%c", x[i-1]); } else if (b[i][j] == 2) printLCS(b, x, i-1, j); else printLCS(b, x, i, j-1); }
阿里、騰訊、創新工場全部筆試跪;網易互聯網簡歷掛;明天去面百度和華為,加油!!!