花费 56 ms
谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实 ...

Thu Dec 29 19:11:00 CST 2016 242 148368
DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法, ...

Fri Dec 23 00:32:00 CST 2016 69 131118
K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的 ...

Tue Dec 13 00:57:00 CST 2016 65 120112
用scikit-learn学习K-Means聚类

    在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类。重点讲述如何选择合适的k值。 1. K-Means类概 ...

Tue Dec 13 23:50:00 CST 2016 52 74511
用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数。 1. s ...

Sun Dec 25 02:54:00 CST 2016 71 67479
BIRCH聚类算法原理

    在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理。这里我们再来看看另外一种常见的聚类算法BIRCH。BIRCH算法比较适合于数据量大,类 ...

Thu Dec 15 01:13:00 CST 2016 68 42365
K-means与K-means++

K-means与K-means++: 原始K-means算法最开始随机选取数据集中K个点作为聚类中心, 而K-means++按照如下的思想选取K个聚类中心: 假设已经选取了n个初始聚类中心 ...

Tue Apr 03 04:12:00 CST 2018 0 27476
Self Organizing Maps (SOM): 一种基于神经网络的聚类算法

自组织映射神经网络, 即Self Organizing Maps (SOM), 可以对数据进行无监督学习聚类。它的思想很简单,本质上是一种只有输入层--隐藏层的神经网络。隐藏层中的一个节点代表一个需要 ...

Sun Jan 10 03:20:00 CST 2016 3 50453
用scikit-learn学习谱聚类

    在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结。这里我们就对scikit-learn中谱聚类的使用做一个总结。 1. scikit-learn谱聚类 ...

Sat Dec 31 01:16:00 CST 2016 40 22896
AP聚类算法(Affinity propagation Clustering Algorithm )

AP聚类算法是基于数据点间的"信息传递"的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。AP算法寻找的"examplars"即聚类中心点是数据集 ...

Mon Jan 05 07:17:00 CST 2015 0 32616

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM