花费 14 ms
1. 感知机原理(Perceptron)

1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 感知机是1957年 ...

Wed Sep 26 22:09:00 CST 2018 5 40283
感知机的简单理解

一,感知机模型 1,超平面的定义 令w1,w2,...wn,v都是实数(R) ,其中至少有一个wi不为零,由所有满足线性方程w1*x1+w2*x2+...+wn*xn=v 的点X=[x1,x2,...xn]组成的集合,称为空间R的超平面。 从定义可以看出:超平面就是点的集合。集合中的某一 ...

Sun Apr 16 03:39:00 CST 2017 5 18935
4. 支持向量机(SVM)原理

1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在我没有学习接触 ...

Fri Nov 09 03:02:00 CST 2018 0 4925
2. 感知机(Perceptron)基本形式和对偶形式实现

1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 今天终于能把感知机 ...

Sun Jan 20 21:01:00 CST 2019 0 3316
1. DNN神经网络的前向传播(FeedForward)

1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层 ...

Thu Nov 22 19:12:00 CST 2018 0 3548
详解深度学习感知机原理

大家好,欢迎阅读深度学习专题。 我们之前的机器学习专题已经结束了,我们把机器学习领域当中常用的算法、模型以及它们的原理以及实现都过了一遍。虽然还有一些技术,比如马尔科夫、隐马尔科夫、条件随机场 ...

Tue Oct 13 18:21:00 CST 2020 0 2083
《机器学习Python实现_07_01_svm_硬间隔支持向量机与SMO》

一.简介 支持向量机(svm)的想法与前面介绍的感知机模型类似,找一个超平面将正负样本分开,但svm的想法要更深入了一步,它要求正负样本中离超平面最近的点的距离要尽可能的大,所以svm模型建模可以分为两个子问题: (1)分的对:怎么能让超平面将正负样本分的开; (2)分的好:怎么能让距离超平面 ...

Thu May 21 06:42:00 CST 2020 17 968
感知机、logistic回归 损失函数对比探讨

感知机、logistic回归 损失函数对比探讨 感知机   假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) 。其学习策略为,定义(经验)损失函数并将损失函数最小化。通常,定义损失函数的策略是:误分类点到分隔超平面的总距离。【李航 ...

Fri Mar 10 17:47:00 CST 2017 0 4032
线性回归,感知机,逻辑回归(GD,SGD)

线性回归 线性回归是一个回归问题,即用一条线去拟合训练数据 线性回归的模型: 通过训练数据学习一个特征的线性组合,以此作为预测函数。 训练目标:根据训练数据学习参数(w1,w2, .. ...

Thu Mar 30 06:33:00 CST 2017 0 3018

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM