线性回归及sgd/bgd的介绍: 监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd) 训练数据形式: (第一列代表x1,第二列代表 x2,第三列代 ...
线性回归及sgd/bgd的介绍: 监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd) 训练数据形式: (第一列代表x1,第二列代表 x2,第三列代 ...
一.简介 支持向量机(svm)的想法与前面介绍的感知机模型类似,找一个超平面将正负样本分开,但svm的想法要更深入了一步,它要求正负样本中离超平面最近的点的距离要尽可能的大,所以svm模型建模可以分 ...
逻辑回归(Logistic Regression)是一种经典的线性分类算法。逻辑回归虽然叫回归,但是其模型是用来分类的。 让我们先从最简单的二分类问题开始。给定特征向量x=([x1,x2,.. ...
简介 上一讲我们实现了一个简单二元分类器:LogisticRegression,但通常情况下,我们面对的更多是多分类器的问题,而二分类转多分类的通常做法也很朴素,一般分为两种:one-vs-re ...
一.简介 上一节介绍了硬间隔支持向量机,它可以在严格线性可分的数据集上工作的很好,但对于非严格线性可分的情况往往就表现很差了,比如: *** PS:请多试几次,生成含噪声点的数据*** ...
最近做一个有关二分类问题,我打算使用K-means算法实现baseline。 首先,我的数据文件形式是“.arff”格式的,在处理这种数据格式的时候,我是花了一些精力的,话不多说,代码如下: ...
二分类问题可能是应用最广泛的机器学习问题。今天我们将学习根据电影评论的文字内容将其划分为正面或负面。 一、数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000 ...
一.利用回归树实现分类 分类也可以用回归树来做,简单说来就是训练与类别数相同的几组回归树,每一组代表一个类别,然后对所有组的输出进行softmax操作将其转换为概率分布,然后再通过交叉熵或者KL一类 ...
一.简介 adaboost是一种boosting方法,它的要点包括如下两方面: 1.模型生成 每一个基分类器会基于上一轮分类器在训练集上的表现,对样本做权重调整,使得错分样本的权重增加,正确分类 ...