最近疯狂刷因式分解来总结一下 一、基础部分 1. 提取公因式 没啥好说的,为最基本的方法,对代数敏感点就好了,一定要一次提取净同时注意符号即可。 有一点可以注意的是:当有些项的系数为分数时,可提取出来,使得括号内部分系数为整数,更加简洁明了。 如:\(\frac{1}{3}x^2+ ...
终于学会因式定理了,qwq 分解因式: x y y z x z 当x y时,x y ,所以分解出来的因式一定有一个 x y 当y z时,y z ,所以分解出来的因式一定有一个 y z 当x z时,x z ,所以分解出来的因式一定有一个 x z 当x ,y ,z 时 x y y z x z x y y z x z 所以原式 x y y z x z ...
2019-08-02 19:51 0 392 推荐指数:
最近疯狂刷因式分解来总结一下 一、基础部分 1. 提取公因式 没啥好说的,为最基本的方法,对代数敏感点就好了,一定要一次提取净同时注意符号即可。 有一点可以注意的是:当有些项的系数为分数时,可提取出来,使得括号内部分系数为整数,更加简洁明了。 如:\(\frac{1}{3}x^2+ ...
1问题的描述: 大于1的正整数n可以分解为:n=x1*x2*x3*…*xm. 例如,当n=12时,共有八种不同的分解式: 12=12 12=62 12=4 12=34 12=322 1 ...
算法提高 8-1因式分解 时间限制:10.0s 内存限制:256.0MB 问题描述 设计算法,用户输入合数,程序输出若个素数的乘积。例如,输入6,输出2*3。输入20,输出 ...
公式法有两个公式: 立方和公式:a^3+b^3=(a+b) (a^2-ab+b^2)立方差公式:a^3-b^3=(a-b) (a^2+ab+b^2) ...
我们都知道对于十进制数,只要这个数能除尽3/9则他个位数字之和也能除尽3/9,以前只知道用没有证明过,下面来简单证明一下。 对于十进制数,举个简单的例子,这个数是abcd,他表示的大小就是 x ...
《因式分解技巧》,单墫著 整式 \(ax-by-bx+ay\) 的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解。 三步曲 以前面的式子为例。 将原式的项适当分组:$$(ax-bx)+(ay-by)$$ 对每一组进行处理(“提”或“代”): $$x(a-b ...
3、最大公因式 一、最大公因式的概念 上一篇我们介绍了多项式之间的除法:整除和带余除法。这之后我们就可以探讨一个重要的问题,就是多项式的因式分解问题。在此之前,先来介绍公因式的概念。 定义:$K[x]$上的多项式$f$和$g$的公共因式称为它们的公因式,即若$p$是$f$、$g$的公因式 ...
描述 给定一个正整数 a,找出最小的正整数 b 使得 b 的所有数位相乘恰好等于 a。 如果不存在这样的结果或者结果不是 32 位有符号整数,返回 0。 样例 1 输入: 48 输出: 68 样 ...