在本节,我们将介绍什么是特征,特征的分类以及常见的特征距离度量和它们的简单实现。 什么是特征 在机器学习和模式识别中,特征是被观测对象的可测量性能或特性。在模式识别,分类和回归中,信息特征的选择,判别和独立特征的选择是有效算法的关键步骤。特征通常是数值型的,但语法模式识别可以使用结构特征 ...
PHOG特征 年 月 日 : : 什么是PHOG PHOG是Pyramid HOG pyramid histogram of oriented gradient 的简称,是在图像尺寸固定的情况下,计算不同尺度下的特征 这一点有点绕,是指要计算HOG特征的区块的划分尺度在变化 ,将这些特征进行拼接得到PHOG特征,在论文 , 中被提出和使用,用来做图像分类。 PHOG原理 具体来讲,HOG特征描述的 ...
2016-07-13 20:18 0 2542 推荐指数:
在本节,我们将介绍什么是特征,特征的分类以及常见的特征距离度量和它们的简单实现。 什么是特征 在机器学习和模式识别中,特征是被观测对象的可测量性能或特性。在模式识别,分类和回归中,信息特征的选择,判别和独立特征的选择是有效算法的关键步骤。特征通常是数值型的,但语法模式识别可以使用结构特征 ...
特征筛选的方法主要包括:Filter(过滤法)、Wrapper(封装法)、Embedded(嵌入法) filter: 过滤法 特征选择方法一:去掉取值变化小的特征(Removing features with low variance) 方法虽然简单但是不太好 ...
sklearn进行特征工程: https://blog.csdn.net/LY_ysys629/art ...
motivation:让模型学习到更复杂的非线性特征。 method:原始特征 + 组合特征。 notes: 连续特征和离散特征都可以做交叉。 HOW TO? 离散特征:笛卡尔积 比如属性A有三个特征,属性B有两个特征,笛卡尔积后就有六个组合特征,然后用one hot ...
特征工程 · 定义:特征工程是指将原始数据转换为特征向量。(比如一片文档包含文本等类型,将这些文本类型的数据转换为数字类型的数据,这个过程是为了计算机更好的理解数据) · 目的:特征工程的处理直接影响模型的预测结果,目的也正是为了提高模型的预测效果 ...
特征选择 (feature_selection) Filter 移除低方差的特征 (Removing features with low variance) 单变量特征选择 (Univariate feature selection) Wrapper 递归特征消除 ...
halcon中什么是xld? xld(eXtended Line Descriptions) 扩展的线性描述,它不是基于像素的,人们称它是亚像素,只不过比像素更精确罢了,可以精确到像素内部的 ...
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。 它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功 ...