特征选择 (feature_selection) 目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance ...
特征选择 (feature_selection) 目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance ...
特征选择是一个重要的数据预处理过程,在现实机器学习任务中,获得数据之后通常先进行特征选择,此后在训练学习器,如下图所示: 进行特征选择有两个很重要的原因: 避免维数灾难:能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少 ...
前言: 上一篇提到了特征提取,或者叫做降维。在文本分类中,特征提取算法的优劣对于文本分类的结果具有非常大的影响。 所以选择效果好的特征提取算法是文本分类前中很重要的步骤。于是这篇就对卡方检验做一个介 ...
过节福利,我们来深入理解下L1与L2正则化。 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法 ...
转载:https://www.cnblogs.com/jasonfreak/p/5448385.html 特征选择主要从两个方面入手: 特征是否发散:特征发散说明特征的方差大,能够根据取值的差异化度量目标信息. 特征与目标相关性:优先选取与目标高度相关性的. 对于特征选择,有时候 ...
在多元线性回归中,并不是所用特征越多越好;选择少量、合适的特征既可以避免过拟合,也可以增加模型解释度。这里介绍3种方法来选择特征:最优子集选择、向前或向后逐步选择、交叉验证法。 最优子集选择 这种 ...
摘要:在随机森林介绍中提到了随机森林一个重要特征:能够计算单个特征变量的重要性。并且这一特征在很多方面能够得到应用,例如在银行贷款业务中能否正确的评估一个企业的信用度,关系到是否能够有效地回收贷款。但 ...
前言: 上一篇比较详细的介绍了卡方检验和卡方分布。这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行。然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那 ...
这里是原文 目录 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术并行处理 并行处理 ...
1. 特征工程之特征预处理 2. 特征工程之特征选择 1. 前言 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征 ...