1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外 ...
1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外 ...
概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归。说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务。那什么是回归任务和分 ...
线性回归 Ridge 回归 (岭回归) Ridge 回归用于解决两类问题:一是样本少于变量个数,二是变量间存在共线性 RidgeCV:多个阿尔法,得出多个对应最佳的 ...
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习、深度学习、神经网络等文章多不胜数。从智能家居、自动驾驶、无人机、智能机器人到人造卫星、安防军备,无论是国家级军事设备还 ...
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对 ...
一.过拟合 建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一 ...
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了。今天我们升级下,主要一起解析下EM算法中GMM(搞事混合 ...
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大;因此减少不必要的特征,简化模型是减小方差的一个重要步骤。除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...