最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。 1.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难 ...
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。 1.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难 ...
相信学过数理统计的都学过线性回归(linear regression),本篇文章详细将讲解单变量线性回归并写出使用最小二乘法(least squares method)来求线性回归损失函数最优解的完整过程,首先推导出最小二乘法,后用最小二乘法对一个简单数据集进行线性回归拟合; 线性回归 ...
目录 1. 曲线拟合 2. 最小二乘法 3. 二次函数拟合 4. 高斯拟合 最近做项目遇到曲线拟合的问题,简单做个总结。 1. 曲线拟合 先扔出一点基本概念: 如果已知函数f(x)在若干点xi(i = 1,2,……n)处的值为yi,便可根据插值 ...
1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外 ...
1 .二次指数平滑法求预测值 /** * 二次指数平滑法求预测值 * @param list 基础数据集合 * @param year 未来第几期 * ...
最小二乘法多项式曲线拟合原理与实现 概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差 ...
一、算法原理 1.1 算法简述 最小二乘法是一种数学优化算法。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以通过样本求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。如下图中,红色实线即为实际值与拟合函数之间的差距,在算法实现过程中,尽量使 ...
最小二乘法的应用例子 如果某个资产在买入后,第 2-100 天内的收益变化如下图所示: 这时,我想要获得第 2-100 天内的任意收益,都是可以方便清晰获得的,但是如果我在第100天的时间,想要预估第107天时的收益呢?从上图中,原始数据是没有第107天的收益的,这时间就必须 ...
概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归。说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务。那什么是回归任务和分 ...
整个过程分七步,为了方便喜欢直接copy代码看结果的同学,每步都放上了完整的代码。 实验数据: 第一步:准备样本数据并绘制散点图 1)代码及其说明 ...