法國數學家傅里葉發現,任何周期函數都可以用正弦函數和余弦函數構成的無窮級數來表示(選擇正弦函數與余弦函數作為基函數是因為它們是正交的),后世稱傅里葉級數為一種特殊的三角級數。 構建傅立葉級數的基礎 如果有一組n維空間的標准正交基向量q1,q2,…,qn,則n維空間內的任意向量v都可以 ...
原文 https: mp.weixin.qq.com s YzPoPnRb gEm EiV et TA 實矩陣也可能碰到復特征值,因此無可避免地在矩陣運算中碰到復數。 矩陣當然也有可能包含復數,最重要的復矩陣是傅立葉矩陣,它用於傅立葉變換。一種特殊的傅立葉變換是快速傅立葉變換 fast Fourier transform ,簡稱FFT,在計算機中很常用,特別是涉及到大數據時,FFT將把傅立葉變換 ...
2019-11-26 17:09 0 429 推薦指數:
法國數學家傅里葉發現,任何周期函數都可以用正弦函數和余弦函數構成的無窮級數來表示(選擇正弦函數與余弦函數作為基函數是因為它們是正交的),后世稱傅里葉級數為一種特殊的三角級數。 構建傅立葉級數的基礎 如果有一組n維空間的標准正交基向量q1,q2,…,qn,則n維空間內的任意向量v都可以 ...
簡單來說,矩陣是充滿數字的表格。 A和B是兩個典型的矩陣,A有2行2列,是2×2矩陣;B有2行3列,是2×3矩陣;A中的元素可用小寫字母加行列下標表示,如a1,2 = 2, a2,2 = 4 矩陣加減法 兩個矩陣相加或相減,需要滿足兩個矩陣的列數和行數一致。 加法交換律 ...
原文:https://mp.weixin.qq.com/s/qCmstZdzCy1WCfBAkEZEoA 線性變換這個詞在線性代數中經常被提及,每個線性變換的背后都有一個矩陣。矩陣的概念比較直觀,相比之下,線性變換就顯得抽象了。 線性變換 拋開矩陣,我們從變換的角度討論投影 ...
消元矩陣 如果用矩陣表示一個有解的方程組,那么矩陣經過消元后,最終能變成一個上三角矩陣U。用一個三元一次方程組舉例: A經過一些列變換,最終得到了一個上三角矩陣U: 回代到方程組后可以直接求解: 如果上面的變換去掉增廣矩陣,可以簡寫為: 矩陣 ...
矩陣空間 矩陣空間是對向量空間的擴展,因為矩陣的本質是向量,所以與向量空間類似,也存在矩陣空間。 在向量空間中,任意兩個向量的加法和數乘仍然在該空間內。類似的,所有固定大小的矩陣也組成了矩陣空間,在空間內的任意兩個矩陣的加法和數乘也在該空間內。例如,M是所有3×3矩陣構成的空間,空間 ...
一維空間的投影矩陣 先來看一維空間內向量的投影: 向量p是b在a上的投影,也稱為b在a上的分量,可以用b乘以a方向的單位向量來計算,現在,我們打算嘗試用更“貼近”線性代數的方式表達。 因為p趴在a上,所以p實際上是a的一個子空間,可以將它看作a放縮x倍,因此向量p可以用p ...
特征值矩陣 假設A有n個線性無關的特征向量x1,x2……xn,這些特征向量按列組成矩陣S,S稱為特征向量矩陣。來看一下A乘以S會得到什么: 最終得到了S和一個以特征值為對角線的對角矩陣的乘積,這個對角矩陣就是特征值矩陣,用Λ表示: 沒有人關心線性相關的特征向量,上式有意義 ...
在線性代數中, LU分解(LU Decomposition)是矩陣分解的一種,可以將一個矩陣分解為一個單位下三角矩陣和一個上三角矩陣的乘積(有時是它們和一個置換矩陣的乘積)。LU分解主要應用在數值分析中,用來解線性方程、求反矩陣或計算行列式。 什么是LU分解 如果有一個矩陣A,將A表示 ...