摘要 本文主要介紹了數論中的歐拉定理,進而介紹歐拉定理的拓展及應用,結合例題展示如何使用拓展歐拉定理實現降冪取模。 在數論中,歐拉定理,(也稱費馬-歐拉定理)是一個關於同余的性質定理。了解歐拉定理之前先來看一下費馬小定理: a是不能被質數p整除的正整數 ...
一 概念 互質關系 如果兩個整數 或者兩個以上的整數 的最大公約數是 ,則稱他們為互質。也就是說兩個整數,除了 以外,沒有其它的最大公約數了,這兩個整數就叫做互質關系。 比如說 , 他們的最大公約數只有 ,所以他們互質 , 他們的最大公約數為 , ,所以這兩數不是互質關系。 歐拉函數 歐拉函數 n 是小於或等於n的正整數中與n互質的數的數目,稱為歐拉函數 比如說當n 時,與 能形成互質關系的數有 ...
2018-12-04 20:04 0 854 推薦指數:
摘要 本文主要介紹了數論中的歐拉定理,進而介紹歐拉定理的拓展及應用,結合例題展示如何使用拓展歐拉定理實現降冪取模。 在數論中,歐拉定理,(也稱費馬-歐拉定理)是一個關於同余的性質定理。了解歐拉定理之前先來看一下費馬小定理: a是不能被質數p整除的正整數 ...
本文介紹[初等]數論、群的基本概念,並引入幾條重要定理,最后籍着這些知識簡單明了地論證了歐拉函數和歐拉定理。 數論是純粹數學的分支之一,主要研究整數的性質。 算術基本定理(用反證法易得):又稱唯一分解定理,表述為 任何大於1的自然數,都可以唯一分解成有限個質數的乘積,公式:\(n=p_1 ...
歐拉函數 \(\varphi(n) \ or \ \phi(n)\) 表示小於n的正整數與n互質的數的個數. 性質: 當n為質數時 \(\varphi(n)=n-1\) 當n為奇數時 \(\varphi(2n) = \varphi(n)\) 證明: \(\because\)歐拉函數為積性函數 ...
也許更好的閱讀體驗 歐拉函數 定義 歐拉函數是 小於等於 x的數中與x 互質 的數的 數目 符號\(\varphi(x)\) 互質 兩個互質的數的最大公因數等於1,1與任何數互質 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...
歐拉定理及其證明[補檔] 一.歐拉定理 背景:首先你要知道什么是歐拉定理以及歐拉函數。 下面給出歐拉定理,對於互質的a,p來說,有如下一條定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 這就是歐拉定理 二.剩余系 定義:對於集合\(\{k*m+a|k ...
擴展歐拉定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...
我真的很遜,所以有錯也說不定。 這篇很簡,所以看不懂也說不定。 總覺得小滿哥講過這個證明,雖然身為老年健忘選手我大概是不記得什么了。。 歐拉定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 費馬小定理:\(a^{p-1 ...
歐拉定理 【前言】 歐拉定理挺好玩的。但是一般就用來優化模算術下的乘方運算,沒啥意思。不過它的性質比較有意思,在很多模算術帶乘方的玩意里有奇效。更何況歐拉函數其本身就比較神奇。 前置技能:容斥,數論基礎,同余基礎。 【歐拉函數】 歐拉函數\(\varphi(n)\)表示\(1\sim n ...