威爾遜定理及其證明 零.前言 由於看的人竟然超過了1000個,於是在 2021.1.8 重寫此文。 一.什么是威爾遜定理 威爾遜定理是指對於一個質數P來說,有 \[(p-1)!\equiv-1(mod\;p) \] 且對於這個定理成立的數一定是質數,即“p為質數”和威爾遜定理 ...
本文轉自synapse 一 威爾遜定理 若p為質數,則 p p 亦: p p modp 例題: HDU YAPTCHA 威爾遜定理及其逆定理 解題報告見http: blog.csdn.net synapse article details 二 費馬小定理 假如p是質數,且gcd a,p ,那么 a p modp 我們可以利用費馬小定理來簡化冪模運算:由於a p a modp ,所以a x modp ...
2017-10-21 15:37 0 1329 推薦指數:
威爾遜定理及其證明 零.前言 由於看的人竟然超過了1000個,於是在 2021.1.8 重寫此文。 一.什么是威爾遜定理 威爾遜定理是指對於一個質數P來說,有 \[(p-1)!\equiv-1(mod\;p) \] 且對於這個定理成立的數一定是質數,即“p為質數”和威爾遜定理 ...
給威爾遜爵士跪了!!! 1、內容 首先,介紹一下什么是威爾遜定理: 1、p為素數。 2、(p-1)! ≡ -1 (mod p)。 有1和2互為充要條件。 2、證明 就證明1為2的充分條件吧。 定義集合A={2,3,4,......,p-2},如果對於A中每一個元素a,均存在 ...
費馬小定理 設m為素數,a為任意整數,且$(a, m)=1$,則$a^{m-1} \equiv 1(mod \ m)$. 證明: 構造一個群$G<{[1],[2], \cdots, [m-1]}, \equiv *>$,下證這是一個群. 封閉性:對任意[i]、[j],假如不 ...
歐拉定理: 若正整數 a , n 互質,則 aφ(n)≡1(mod n) 其中 φ(n) 是歐拉函數(1~n) 與 n 互質的數。 證明如下: 不妨設X1,X2 ...... Xφn是1~n與n互質的數。 首先我們先來考慮一些數:aX1,aX2 ...
歐拉定理以及費馬小定理的證明 前言 好久沒有刷過數論的題了,感覺之前證明過的一些東西都有些忘記了,正好最近在重新學數論,就順便記下一些定理及證明。 歐拉定理的證明 先寫歐拉定理是因為費馬小定理本身就是歐拉定理的一個特例,其證明過程本質上是一致 ...
描述: 如果整數p符合(p - 1)! ≡ -1 ( mod p ),則p是素數。但是由於階乘增長非常快的,其結論對於實際操作意義不大。 通俗點,當且僅當p是素數,則(p-1)! + 1能被p整除。 證明: 充分性證明: 證明其逆反命題即可:如果p是合數,則p不符合(p ...
對於正整數n,歐拉函數是小於等於n的正整數中與n互質的數的數目,表示為φ(n)。 性質1:對於素數p,φ(p)=p-1。 性質2:對於兩個互質數p,q,φ(pq)=φ(p)*φ(q)=(p-1)(q-1)。(積性函數)(易證) 性質3:若n是質數p的k次冪,φ(n)=pk-pk-1=(p-1 ...
2016.1.26 歐拉函數: 對於m=p1e1 . p2e2 . p3e3 . …… . pnen (唯一分解) 歐拉函數定義為φ(m)=m * ∏(pi – 1)/pi 其意義為不超過m並且和m互素的數的個數 特別的φ(1)=1 證明: 首先不知道容 ...