原文:基於線性代數的一般圖匹配

不想學帶花樹,於是乎就學了一發高斯消元版的一般圖匹配 這個東西的優點肯定是有的,最主要的是不用去學習帶花樹的那一套理論了,只需要會用高斯消元就行,代碼難度相比帶花樹來說小一些。當然缺點也有,最要命的就是常數太大,不卡一下常都過不了UOJ 貼一份UOJ 的板子,懶得解釋了,不要介意 UPD:一開始貼的板子似乎有錯,重新貼一個應該沒錯的板子好了 View Code 注意,直接寫的話會在第 個測試點TL ...

2017-05-25 17:14 9 537 推薦指數:

查看詳情

線性代數丨《線性代數及其應用》思維導

線性代數(Linear Algebra),作為大學理工科開設的基礎課程,如今已成為機器學習中用來表征數據的基本工具,其重要性不言而喻。本科曾學習過這門課程的我,當時對里面的很多概念並沒有理解清楚,尤其是線性代數的幾何意義。后來在研一上半學期我又重新回顧了一次。這是我閱讀完Lay D.C的《線性代數 ...

Fri Jan 31 01:00:00 CST 2020 6 5035
線性代數及其應用(一)

線性方程組: 包含變量x1,x2,……,xn的線性方程是形如           a1x2 +a2x2+...+a3x3 = b 的方程,其中b與系數a1 ,a2 ,…… ,an是實數或者復數,通常是已知數,下標n可以是任意正整數。 線性方程組的解有下列三種情況: ①無解 ...

Tue Jan 12 00:03:00 CST 2021 0 596
線性代數總結

一、行列式性質 二、行列式的運算 1、 2、 3、 4、代數余子式 5、 6、多個A或M相加減 7、 三、矩陣運算(加減、相乘) 1、矩陣加減 2、矩陣相乘 3、矩陣取絕對值 四、轉置、秩 ...

Sat Oct 16 18:56:00 CST 2021 0 179
線性代數基礎

目錄 線性方程組 概述 初等行變換與高斯消元 齊次方程組 有限維向量空間 n維向量 向量組 線性相關與無關 向量組的秩 矩陣 矩陣的秩 矩陣的相抵標准型 ...

Sat Apr 18 22:00:00 CST 2020 0 3802
線性代數

https://www.bilibili.com/video/av22727915/?p=1 線性代數這門課主要描述這樣的問題, 如何解多元一次方程組,即一個線性方程式的系統 解這個系統,就是要回答下面的問題,有沒有解,多少解,怎么求解 為什么要研究一次線性 ...

Wed Jul 25 23:50:00 CST 2018 0 1610
線性代數入門

前言 某次模擬賽被矩陣虐哭,補一波線代 這篇博客偏入門,概念較多,算法相關較少 大力膜拜\(3B1B\)的線性代數的本質系列 (參考資料來源,或者干脆叫觀影總結吧……) 完全就是觀影總結\(qwq\) 記號:不作特殊說明,本文中的大寫字母均表示某個矩陣,小寫字母均表示某個向量 順便 ...

Sat Dec 28 01:16:00 CST 2019 9 1131
線性代數

線性方程組 我們將要學的:A system of linear equations (多元一次聯立方程式) 由於本課程中m,n都很大,因此要采用與高中解方程組不同的視角,如: 是否有解 是否有唯一解 怎樣找到解 行列式 ...

Tue May 01 18:27:00 CST 2018 1 1008
線性代數

線性代數總結1.矩陣乘法A$\times$B=C $ \ \ \ \ \ \ $$C[i][j]$表示$\sum{A[i][k]\times B[k][j]}$$ \ \ \ \ $$DP$ 思想$G\times G$ $ \ \ \ G[i][j]$ 表示從$i$到$j ...

Sun Jan 30 22:27:00 CST 2022 0 748
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM