多元函數的極限、連續、偏導數與全微分 內容精講 例題分析 多元函數微分法 內容精講 例題分析 ...
二元函數偏導數定義:設函數z f x,y 在點 x ,y 的某鄰域有定義,固定y y ,是x從 x 變到 x Delta x 時,函數的變化為 f x Delta x,y f x ,y 。如果極限 lim Delta x rightarrow frac f x Delta x,y f x ,y Delta x 存在,則稱此極限為z f x,y 在 x ,y 對x的偏導數,記做 frac part ...
2016-11-06 17:53 0 1580 推薦指數:
多元函數的極限、連續、偏導數與全微分 內容精講 例題分析 多元函數微分法 內容精講 例題分析 ...
本篇博客只是博主為了記錄重要概念寫的 本博客內的文章均可通過百度“漫步微積分”找到 三:如何計算切線的斜率 四:導數的定義 六:極限 七:連續函數 ...
1、正項級數$\sum_{n=1}^{oo}u_{n}$收斂的充要條件是它的部分和$S_{n}=\sum_{i=1}^{n}u_{i}$有上界。2、正項級數常用的幾種判別方法:(1)對於$\sum_{ ...
1階導:\(\frac {dy}{dx}\) 2階導:\(\frac {d(\frac {dy}{dx})}{dx}=\frac {d^{~2}y}{dx^{~2}}\) n階導:\(\frac ...
參考資料:【官方雙語/合集】微積分的本質 - 系列合集 - 3Blue1Brown - bilibili (搭配食用體驗更佳) 這篇文章中有很多內容都推薦用 數形結合 的方法來學習。 導數入門 兩種重要的、針對函數的運算:求導與積分。它們的運算結果也是一個函數。 先說求導。對於函數 \(f ...
各種數:伯努利數,斯特林數,二項式系數及其恆等式。(至少...知道是什么)各種反演:二項式反演,莫比烏斯反演,MinMax容斥(至少會背公式)各種卷積:卷積,狄利克雷卷積,子集卷積,集合並卷積,集合交卷積,集合對稱卷積(至少明白是什么意思) 這幾天比較系統的學了一下微積分和導數(其實是高考 ...
微積分 定義 微分 \(\mathrm{d}y\) 就是對 \(y\) 的微分,是對 \(\Delta y\) 的近似. \(\mathrm{d}y=f'(x)\mathrm{d}x\) 如 \(\mathrm{d}(\sin x)=(\sin x)'\mathrm{d}x=\cos ...
多元復合函數二階導數與向量微積分的思考 引入 對於形似\(z=f(u_1,u_2,...,u_n),\)其中\(u_i=g_i(x_i)\)的多元復合函數,對其二階導數的考察常常會經過繁瑣而重復的運算,且容易在連續運用鏈式法則時犯錯。本文將提出該類題型的通解以及理論推導過程供參考。 例1:設 ...