原文:線性變換的本質

線性變換就是矩陣的變換,而任何矩陣的變換可以理解為一個正交變換 伸縮變換 另一個正交變換。 正交變換可以暫時理解為 不改變大小以及正交性的旋轉 反射 等變換 A P y P ,y就是特征值,P是特征向量,矩陣A做的事情無非是把P沿其P的方向拉長 縮短了一點 而不是毫無規律的多維變換 。y描述沿着這個方向上拉伸的比例。 對於滿秩的n n方陣,做特征值變換,非滿秩的矩陣,做奇異值變換,差別在於前者是個 ...

2016-10-18 12:58 0 5357 推薦指數:

查看詳情

了解矩陣、線性變換本質

如果不熟悉線性代數的概念,要去學習自然科學,現在看來就和文盲差不多。”,然而“按照現行的國際標准,線性代數是通過公理化來表述的,它是第二代數學模型,這就帶來了教學上的困難。” * 矩陣究竟是什么東西?向量可以被認為是具有n個相互獨立的性質(維度)的對象的表示,矩陣又是什么呢?我們如果認為矩陣是一組 ...

Fri Apr 02 18:47:00 CST 2021 0 296
線性代數的本質 - 系列合集】矩陣與線性變換

線性變換定義 直觀地說,如果一個變換具有以下兩條性質,我們就稱它是線性的: 一是直線在變換后仍然保持為直線,不能有所彎曲(變換后對角線也必須是直線,也就是變換后的x軸和y軸保持平行且等分) 二是原點必須保持固定 總的來說,你應該吧線性變換看作是 保持網格平行且等距分布,並保持 ...

Sun Aug 15 08:27:00 CST 2021 0 102
線性代數的本質(3)——矩陣與線性變換

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself ---Morpheus 正如墨菲斯所說:沒人能夠清楚地告訴你矩陣是什么,你必須自己親自看看。 3.1 線性變換 ...

Wed May 13 23:41:00 CST 2020 0 1183
對了解矩陣、線性變換本質有太大幫助

對了解矩陣、線性變換本質有太大幫助 如果不熟悉線性代數的概念,要去學習自然科學,現在看來就和文盲差不多。”,然而“按照現行的國際標准,線性代數是通過公理化來表述的,它是第二代數學模型,這就帶來了教學上的困難。” * 矩陣究竟是什么東西?向量可以被認為是具有n個相互獨立的性質(維度)的對象的表示 ...

Mon Sep 18 19:40:00 CST 2017 0 3590
什么是線性變換和非線性變換

什么是線性變換和非線性變換 一、總結 一句話總結: [①]、從數值意義上,變換即函數,線性變換就是一階導數為常數的函數,譬如y=kx,把y=kx拓展為n維空間的映射,x、y看做n維向量,當k為常數時,易得滿足同質性f(ka)=kf(a),當k為一個矩陣時,易得滿足可加性f(a+b)=f ...

Tue Sep 22 04:48:00 CST 2020 0 1723
灰度線性變換

以灰度圖像為例,假設原圖像像素的灰度值為D = f(x,y), (x,y)為圖像坐標,處理后圖像像素的灰度值為D’ = g(x,y),則灰度變換函數可以表示為: g(x,y) = T[f(x,y)] 或 D = T[D] 要求D和D’都在圖像的灰度范圍之內。灰度變換函數描述了輸入灰度值 ...

Sun Jul 01 00:31:00 CST 2012 1 13655
對於線性變換的理解

線性變換就相當於一個空間到另外一個空間的轉換,在數學建模時經常用到,T(x)這個x可以時一個空間中的坐標,或者是基,或者是向量,線性變化就是將這些乘以一個矩陣,轉換到另外一個空間來表示,這個矩陣是線性變換的數學表示,不同的矩陣代表着不同的線性變換,當然線性變換在不同的的基下由不同的矩陣表示,不同基 ...

Tue Dec 04 00:23:00 CST 2018 0 627
矩陣與線性變換

首先,恭喜你讀到了咪博士的這篇文章。本文可以說是該系列最重要、最核心的文章。你對線性代數的一切困惑,根源就在於沒有真正理解矩陣到底是什么。讀完咪博士的這篇文章,你一定會有一種醍醐灌頂、豁然開朗的感覺! 咱們先來說說啥叫變換本質上,變換就是函數。 例如,你輸入一個向量 [57 ...

Sat Dec 30 23:20:00 CST 2017 2 6444
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM