原文:Jordan標准形

一 引入 前面已經指出,一切n階矩陣A可以分成許多相似類。今要在與A相似的全體矩陣中,找出一個較簡單的矩陣來作為相似類的標准形。當然以對角矩陣作為標准形最好,可惜不是每一個矩陣都能與對角矩陣相似。因此,急需引入一種較為簡單而且對於一般矩陣都可由相似變換得到。 當矩陣A能相似於某對角矩陣時,該對角矩陣就是A的一個Jordan形。而當矩陣A不能相似於對角矩陣時,它必然與一個非對角的Jordan形相似。 ...

2015-08-22 10:01 0 2201 推薦指數:

查看詳情

高等代數的筆記雜記——Jordan標准Jordan

  之前發現了線性變換和線性映射對應矩陣的求法和找他們的相似和相抵,我們會發現,如果可以把一個線性變換對應的矩陣對角化,那么它比較便於我們進行一些運算,(比如乘方冪次,比如可以和多項式相結合),但是對角化有比較嚴苛的條件: 特征子空間的維數之和需要等於線性變換A所對應的空間V的維數n,也就是說 ...

Wed Apr 29 06:58:00 CST 2020 0 2316
Jordan 標准型定理

將學習到什么 就算兩個矩陣有相同的特征多項式,它們也有可能不相似,那么如何判斷兩個矩陣是相似的?答案是它們有一樣的 Jordan 標准型. Jordan 標准型定理 這節目的:證明**每個復矩陣都與一個本質上唯一的 Jordan 矩陣相似**. 分三步證明這個結論。其中前兩步 ...

Sun Nov 12 22:24:00 CST 2017 0 5061
Jordan 標准型的實例

將學習到什么 練習一下如何把一個矩陣化為 Jordan 標准型. 將矩陣化為 Jordan 標准型需要三步: 第一步 求出矩陣 \(A \in M_n\) 全部的特征值 \(\lambda_1,\cdots,\lambda_t\), 假設有 \(t\) 個不同的特征值 ...

Sun Nov 12 22:24:00 CST 2017 1 14174
矩陣論練習27(Jordan標准型)

Jordan標准型矩陣的定義很簡單,矩陣比較多,不好打,略過。 Jordan標准型與最小多項式有密切關系。 定理1 若矩陣\(J\)為矩陣\(A\)的若當標准型矩陣,\(\lambda\)是任意數字,則對一切正整數\(n\),有 \(Rank(A-\lambda I)^k = Rank(J- ...

Sun Sep 06 18:14:00 CST 2020 0 1072
Jordan 標准型和實 Weyr 標准

將學習到什么 本節討論關於實矩陣的實形式的 Jordan 標准型,也討論關於復矩陣的另外一種形式的 Jordan 標准型,因為它在與交換性有關的問題中很有用. 實 Jordan 標准型 假設 \(A \in M_n(\mathbb{R})\), 所以任何非實的特征值必定成對共軛出現 ...

Mon Nov 20 17:34:00 CST 2017 0 1046
【線性代數】 06 - Jordan標准

  現在就來研究將空間分割為不變子空間的方法,最困難的是我們還不知道從哪里着手。你可能想到從循環子空間出發,一塊一塊地進行分割,但這個方案的存在性和唯一性都不能解決。不變子空間分割不僅要求每個子空間\ ...

Wed Nov 18 19:14:00 CST 2015 1 3529
3 矩陣的相似標准

關聯:0 復習與引申、1 線性空間與線性變換、2 內積空間與等距變換 本章目的 對給定的矩陣,(在找不到相似對角陣的情況下)找一個最簡單的矩陣與之相似。 對給定的線性空間上的線 ...

Tue Dec 07 20:39:00 CST 2021 0 1058
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM