傅里葉變換的基本性質
1. 對稱性
若\(F(\omega)=\mathscr{F}[f(t)]\),那么\(\mathscr{F}[F(t)]=2\pi f(-\omega)\)
證明:
\[\begin{aligned} f(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega \\ f(-t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{-j\omega t}d\omega \\ 2\pi f(-\omega)&=\int_{-\infty}^{\infty}F(t)e^{-j\omega t}dt \end{aligned} \tag{1} \]
顯然上式就是傅里葉正變換的定義形式。
2. 線性(疊加性)
若\(\mathscr{F}[f_{i}(t)]=F_{i}(\omega)\ (i=1,2,\cdots,n)\),則
\[\mathscr{F}[\sum_{i=1}^{n}a_{i}f_{i}(t)]=\sum_{i=1}^{n}a_{i}F_{i}(\omega) \tag{2} \]
3. 奇偶虛實性
一般情況下,\(F(\omega)\)是復函數,因而可以把它表示成模與相位或者實部與虛部兩部分,即
\[F(\omega)=|F(\omega)|e^{j\varphi(\omega)}=R(\omega)+jX(\omega) \]
\[\left \{ \begin{aligned} |F(\omega)| &= \sqrt{R^{2}(\omega)+X^{2}(\omega)} \\ \varphi(\omega) &= \text{arctan}[\frac{X(\omega}{R(\omega)}] \end{aligned} \tag{3a} \right. \]
(1) \(f(t)\)是實函數
\[\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt \\ &= \int_{-\infty}^{\infty}f(t)cos(\omega t)dt-j\int_{-\infty}^{\infty}f(t)sin(\omega t)dt \end{aligned} \]
在這種情況下,顯然
\[\left \{ \begin{aligned} R(\omega)&=\int_{-\infty}^{\infty}f(t)cos(\omega t)dt \\ X(\omega) &= -\int_{-\infty}^{\infty}f(t)sin(\omega t)dt \end{aligned} \tag{3b} \right.\]
此時,\(R(-\omega)=\int_{-\infty}^{\infty}f(t)cos(-\omega t)dt=R(\omega)\)為偶函數,\(X(-\omega)= \int_{-\infty}^{\infty}f(t)sin(-\omega t)dt=-X(\omega)\)為奇函數。在此基礎上,根據式\((3a)\)可以得到\(|F(\omega)|\)為偶函數,\(\varphi(\omega)\)為奇函數。也就是說,實函數的傅里葉變換的幅度譜是偶函數,相位譜是奇函數。
(2) \(f(t)\)是虛函數
令\(f(t)=jg(t)\),則
\[\left \{ \begin{aligned} R(\omega)&=\int_{-\infty}^{\infty}g(t)sin(\omega t)dt \\ X(\omega) &= \int_{-\infty}^{\infty}g(t)cos(\omega t)dt \end{aligned} \right.\]
在這種情況下,\(R(\omega)\)是奇函數,\(X(\omega)\)是偶函數,而\(|F(\omega)|\)仍然為偶函數,\(\varphi(\omega)\)仍然為奇函數。
4. 尺度變換特性
若\(\mathscr{F}[f(t)]=F(\omega)\),則
\[\mathscr{F}[f(at)]=\frac{1}{|a|}F(\frac{\omega}{a}) \tag{4} \]
其中\(a\)為非零實常數。
證明:
\[\begin{aligned} \mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(at)e^{-j\omega t}dt \end{aligned} \]
令\(x=at\)
當\(a>0\)
\[\begin{aligned} \mathscr{F}[f(at)]&=\frac{1}{a}\int_{-\infty}^{\infty}f(at)e^{-j\omega\frac{x}{a}}dx \\ &=\frac{1}{a}F(\frac{\omega}{a}) \end{aligned} \]
當\(a<0\)
\[\begin{aligned} \mathscr{F}[f(at)]&=\frac{1}{a}\int_{+\infty}^{-\infty}f(at)e^{-j\omega\frac{x}{a}}dx \\ &=\frac{-1}{a}\int_{-\infty}^{\infty}f(x)e^{-j\omega\frac{x}{a}}dx \\ &=\frac{-1}{a}F(\frac{\omega}{a}) \end{aligned} \]
綜合上述兩種情況,便可以證明式\((4)\)。
對於\(a=-1\)這種特殊情況,\(\mathscr{F}[f(-t)]=F(-\omega)\)。
由上可見,信號在時域中壓縮(a>1)等效於在頻域中擴展;反之,信號在時域中擴展(a<1)則等效於在頻域中壓縮。對於\(a=-1\)的情況,它說明信號在時域中反褶等效於在頻域中也反褶。上述結論是不難理解的,因為信號的波形壓縮\(a\)倍,信號隨時間變化加快\(a\)倍,所以它所包含的頻率分量增加\(a\)倍,也就是說頻譜展寬\(a\)倍,根據能量守恆原理,各頻率分量的大小必然減小\(a\)倍。
因為\(F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt\),所以
\[F(0)=\int_{-\infty}^{\infty}f(t)dt \tag{4a} \]
同樣因為:\(f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{-j\omega t}d\omega\),所以
\[f(0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)d\omega \tag{4b} \]
上面兩式分別說明\(f(t)\)與\(F(\omega)\)所覆蓋的面積等於\(F(\omega)\)與\(2\pi f(t)\)在零點的數值\(F(0)\)與\(2\pi f(0)\)。
如果\(f(0)\)與F(0)各自等於\(f(t)\)與\(F(\omega)\)曲線的最大值,這時定義\(\tau\)和\(B\)分別為\(f(t)\)與\(F(\omega)\)的等效寬度,可寫出如下關系式:
\[\begin{aligned} f(0)\tau &= F(0) \\ F(0)B &= 2\pi f(0) \end{aligned} \]
從而可以得到
\[B=\frac{2\pi}{\tau} \tag{4c} \]
可以看出,信號的等效脈沖寬度與占有的等效帶寬成反比,若要壓縮信號的持續時間,則不得不以展寬頻帶作為代價。所以通信系統中,通信速度和占用頻帶寬度是一對矛盾。
5. 時移特性
若\(\mathscr{F}[f(t)]=F(\omega)\),則
\[\mathscr{F}[f(t-t_{0})]=F(\omega)e^{-j\omega t_{0}} \tag{5} \]
證明:
因為
\[\mathscr{F}[f(t-t_{0})]=\int_{-\infty}^{\infty}f(t-t_{0})e^{-j\omega t}dt \]
令
\[x = t-t_{0} \]
那么
\[\begin{aligned} \mathscr{F}[f(t-t_{0})]&=\mathscr{F}[f(x)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega(x+t_{0})}dx \\ &= e^{-j\omega t_{0}}\int_{-\infty}^{\infty}f(x)e^{-j\omega x}dx \end{aligned} \]
同理可得:
\[\mathscr{F}[f(t+t_{0})]=e^{j\omega t_{0}}\cdot F(\omega) \]
也就是說,信號移動后,其幅度譜不變,而相位譜產生附件變換\((-\omega t_{0}/\omega t_{0})\)。
6. 頻移特性
若\(\mathscr{F}[f(t)]=F(\omega)\),則,
\[\mathscr{F}[f(t)e^{j\omega_{0}t}]=F(\omega-\omega_{0}) \tag{6} \]
證明:
因為:
\[\begin{aligned} \mathscr{F}[f(t)e^{j\omega_{0}t}]&=\int_{-\infty}^{\infty}f(t)e^{j\omega_{0}t}\cdot e^{-j\omega t}dt \\ &= \int_{-\infty}^{\infty}f(t)e^{-j(\omega-\omega_{0})t}dt\end{aligned} \]
所以
\[\mathscr{F}[f(t)e^{j\omega_{0}t}]=F(\omega-\omega_{0}) \]
同理
\[\mathscr{F}[f(t)e^{-j\omega_{0}t}]=F(\omega+\omega_{0}) \]
可見,若時間信號\(f(t)\)乘以\(e^{j\omega_{0}t}\),等效於\(f(t)\)的頻譜\(F(\omega)\)沿頻率軸右移\(\omega_{0}\),或者說在頻域中將頻譜沿頻率軸右移\(\omega_{0}\)等效於在時域中信號乘以因子\(e^{j\omega_{0}t}\)。
頻譜搬移技術在通信系統中得到廣泛應用,諸如調幅、同步解調、變頻等過程都是在頻譜搬移的基礎上完成的。頻譜搬移的實現原理是將信號\(f(t)\)乘以所謂載頻信號\(cos(\omega_{0}t)/sin(\omega_{0}t)\)。
因為:
\[\begin{aligned} cos(\omega_{0}t) &= \frac{1}{2}(e^{j\omega_{0}t}+e^{-j\omega_{0}t}) \\ sin(\omega_{0}t) &= \frac{1}{2j}(e^{j\omega_{0}t}-e^{-j\omega_{0}t}) \end{aligned} \]
那么,可以導出:
\[\begin{aligned} \mathscr{F}[f(t)cos(\omega_{0}t)] &= \frac{1}{2}[F(\omega+\omega_{0})+F(\omega-\omega_{0})] \\ \mathscr{F}[f(t)sin(\omega_{0}t)] &= \frac{1}{2}[F(\omega+\omega_{0})-F(\omega-\omega_{0})] \end{aligned} \tag{6a} \]
所以,若時間信號\(f(t)\)乘以\(cos(\omega_{0}t)\)或\(sin(\omega_{0}t)\),等效於\(f(t)\)的頻譜\(F(\omega)\)一分為二,沿頻率軸向左向右各平移\(\omega_{0}\)。
已知直流信號的頻譜是位於\(\omega=0\)點的沖激函數,也即:
\[\mathscr{F}[1]=2\pi\delta(\omega) \]
利用頻移定理,可以得到:
\[\mathscr{F}[cos(\omega_{0}t)]=\pi[\delta(\omega+\omega_{0})+\delta(\omega-\omega_{0})] \]
\[\mathscr{F}[sin(\omega_{0}t)]=j\pi[\delta(\omega+\omega_{0})-\delta(\omega-\omega_{0})] \]
7. 微分特性
若\(\mathscr{F}[f(t)]=F(\omega)\),則
\[\begin{aligned} \mathscr{F}[\frac{df(t)}{dt}] &= j\omega F(\omega) \\ \mathscr{F}[\frac{d^{n}f(t)}{dt^{n}}] &= (j\omega)^{n} F(\omega) \\ \end{aligned} \tag{7} \]
證明:
因為:
\[f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega \]
兩邊對t求導,得:
\[\frac{df(t)}{dt}=\frac{1}{2\pi}\int_{-\infty}^{\infty}[j\omega F(\omega)]e^{j\omega t}dt \]
所以:
\[\mathscr{F}[\frac{df(t)}{dt}] = j\omega F(\omega) \]
同理,可以推出:
\[\mathscr{F}[\frac{d^{n}f(t)}{dt^{n}}] = (j\omega)^{n} F(\omega) \]
同理可以推出,頻域的微分特性如下:
\[\begin{aligned} \mathscr{F}^{-1}[\frac{dF(\omega)}{d\omega}] &= (-jt) f(t) \\ \mathscr{F}^{-1}[\frac{d^{n}F(\omega)}{d\omega^{n}}] &= (-jt)^{n} f(t) \\ \end{aligned} \tag{7a} \]
8. 積分特性
若\(\mathscr{F}[f(t)]=F(\omega)\),則
\[\mathscr{F}[\int_{-\infty}^{t}f(\tau)d\tau]=\frac{F(\omega)}{j\omega}+\pi F(0)\delta(\omega) \tag{8} \]
證明:
\[\begin{aligned} \mathscr{F}[\int_{-\infty}^{t}f(\tau)d\tau]&=\int_{-\infty}^{\infty}[\int_{-\infty}^{t}f(\tau)d\tau]e^{-j\omega t}dt \\ &=\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}f(\tau)u(t-\tau)d\tau]e^{-j\omega t}dt \end{aligned} \tag{8a} \]
上式將被積函數\(f(t)\)乘以\(u(t-\tau)\),同時將積分上限\(t\)改為\(\infty\),結果不變。交換積分次序,並引用延時階躍信號的傅里葉變換關系式,式\((8a)\)成為:
\[\begin{aligned} &\quad \int_{-\infty}^{\infty}f(\tau)[\int_{-\infty}^{\infty}u(t-\tau)e^{-j\omega t}dt]d\tau \\ &=\int_{-\infty}^{\infty}f(\tau)\pi \delta(\omega)e^{-j\omega \tau}d\tau + \int_{-\infty}^{\infty}f(\tau)\frac{e^{-j\omega\tau}}{j\omega}d\tau\\ &=\pi F(0)\delta(\omega)+\frac{F(\omega)}{j\omega} \end{aligned} \tag{8a} \]
9. 卷積特性
(1)時域卷積定理
給定兩個時間函數\(f_{1}(t), f_{2}(t)\),已知\(\mathscr{F}[f_{1}(t)]=F_{1}(\omega),\mathscr{F}[f_{2}(t)]=F_{2}(\omega)\),那么
\[\mathscr{F}[f_{1}(t)*f_{2}(t)]=F_{1}(\omega)F_{2}(\omega) \tag{9a} \]
證明:
根據卷積的定義
\[f_{1}(t)*f_{2}(t)=\int_{-\infty}^{\infty}f_{1}(\tau)f_{2}(t-\tau)d\tau \]
因此:
\[\begin{aligned} \mathscr{F}[f_{1}(t)*f_{2}(t)]&=\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}f_{1}(\tau)f_{2}(t-\tau)d\tau]e^{-j\omega t}dt \\ &= \int_{-\infty}^{\infty}f_{1}(\tau)[\int_{-\infty}^{\infty}f_{2}(t-\tau)e^{-j\omega t}dt]d\tau \\ &= \int_{-\infty}^{\infty}f_{1}(\tau)F_{2}(\omega)e^{-j\omega\tau}d\tau \\ &= F_{2}(\omega)\int_{-\infty}^{\infty}f_{1}(\tau)e^{-j\omega\tau}d\tau \\ &= F_{1}(\omega)F_{2}(\omega) \end{aligned}\]
(2)頻域卷積定理
若
\[\begin{aligned} \mathscr{F}[f_{1}(t)]=F_{1}(\omega) \\ \mathscr{F}[f_{2}(t)]=F_{2}(\omega) \\ \end{aligned}\]
那么
\[\mathscr{F}[f_{1}(t)\cdot f_{2}(t)]=\frac{1}{2\pi}F_{1}(\omega)*F_{2}(\omega) \tag{9b} \]