專題 求數列的通項公式


\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)【【高分突破系列】 高二數學下學期同步知識點剖析精品講義
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)

選擇性必修第二冊同步提高,難度3顆星!

模塊導圖

知識剖析

求數列的通項公式是高考常考的一專題,形式多樣,解題方法很多,常見的有累加法、累乘法、待定系數法、迭代法、取倒數法等,課外延申的還有不動點法等,不管什么方法,一定要理解解題方法的本質,清楚每種方法的適用范圍,避免出現“看得懂,模仿做還行,獨立思考就含糊”的情況.
 

經典例題

【方法一】觀察法

\({\color{Red}{適用范圍:}}\)給出數列的前幾項,猜測通項公式;
\({\color{Red}{方法:}}\)通過觀察,得知數列各項之間數值的關系(比如數值之間的差或商成一定規律)或數值結構特點(比如數值的正負,分式,平方)從而求得通項公式.

 
【典題1】寫出下列數列\(\{a_n\}\)的一個通項公式
\((1)-7,14,-21,28,…\)
\((2) \dfrac{1}{4}, \dfrac{3}{8}, \dfrac{5}{16}, \dfrac{7}{32} \ldots\)
\((3) 2,5,10,17,26,…\)
\((4) 32,332,3332,33332,….\)
\((5) 1,2,2,3,3,4,4,….\)
【解析】\({\color{Red}{分解結構法:}}\)注意數值的結構,看其是否可視為兩個或多個數列組合而成.
\((1)\)數列\(-7 ,14 ,-21 ,28\),…每項可分解成符號和項的絕對值相乘得到,

\(a_{n}=(-1)^{n} 7 n\)
\((2)\)數列\(\dfrac{1}{4}, \dfrac{3}{8}, \dfrac{5}{16}, \dfrac{7}{32} \ldots\)…每項可分解成分子和分母相除得到,

\(a_n=(2n-1)2^{n+1}\)
\({\color{Red}{變形法:}}\)數列本身特點不明顯,但通過加減乘除某個數之類方式變形成“規律感更強”的數列.
\((3)\)數列\(2 ,5 ,10 ,17 ,26\),…中若每項減去\(1\),則變成\(1\),\(4\),\(9\),\(16\),\(25\),…,
這些數都是完全平方數,易想到數列的通項是\(n^2\)
則原數列只需要在這基礎上加回\(1\)便可,即\(a_n=n^2+1\).
\((4)\)數列\(2\),\(32\),\(332\),\(3332\),\(33332\),….中若每項加上\(1\),則變成\(3\),\(33\),\(333\),\(3333\),\(33333\),….,再每項乘以\(3\),變成\(9\),\(99\),\(999\),\(9999\),\(99999\),…
其中\(9=10-1\),\(99=10^2-1\)\(999=10^3-1\)\(9999=10^4-1\)\(99999=10^5-1\)
則其通項\(b_n=10^{n+1}-1\)
要求原數列的通項公式,
則“逆回去”,除以\(3\)再減\(1\)可得\(a_{n}=\dfrac{b_{n}}{3}-1=\dfrac{10^{n+1}-1}{3}-1=\dfrac{10^{n+1}-4}{3}\).
\({\color{Red}{分奇偶項}}\)
\((5)\)數列\(1\),\(2\),\(2\),\(3\),\(3\),\(4\),\(4\),… , 相鄰每項之間沒什么關系,若分奇偶性來看,就簡單多了,
可得奇數項為\(1\),\(2\),\(3\),\(4\),… , 可得\(a_{n}=\dfrac{n+1}{2}\).偶數項為\(2\),\(3\),\(4\),… , 可得\(a_{n}=\dfrac{n+2}{2}\)
則該數列通項公式\(a_{n}= \begin{cases}\dfrac{n+1}{2}, & n \text { 為奇數 } \\ \dfrac{n+2}{2}, & n \text { 為偶數 }\end{cases}\).
【點撥】觀察法主要是依靠“數感”,以上講解的“分解結構法”“變形法”可有助於觀察,它對后面講到的利用數學歸納法求解通項公式有用.
 

鞏固練習

1 (★)數列\(1,-\dfrac{\sqrt{2}}{2}, \dfrac{1}{2},-\dfrac{\sqrt{2}}{4}, \dfrac{1}{4}\), …的一個通項公式為(  )
A.\(\left(-\dfrac{1}{2}\right)^{n-1}\) \(\qquad \qquad\) B.\(\left(-\dfrac{\sqrt{2}}{2}\right)^{n}\) \(\qquad \qquad\) C.\((-1)^{n}\left(\dfrac{\sqrt{2}}{2}\right)^{n-1}\) \(\qquad \qquad\) D.\((-1)^{n+1}\left(\dfrac{\sqrt{2}}{2}\right)^{n-1}\)
 

2 (★)下列可作為數列\(1\),\(2\),\(1\),\(2\),\(1\),\(2\),…的通項公式的是(  )
A.\(a_{n}=\dfrac{1+(-1)^{n-1}}{2}\) \(\qquad \qquad\)B.\(a_{n}=\dfrac{3+(-1)^{n}}{2}\) \(\qquad \qquad\) C.\(a_{n}=2-\sin \dfrac{n \pi}{2}\) \(\qquad \qquad\) D.\(a_{n}=2-\cos [(n-1) \pi]\)
 

3 (★★)寫出以下各數列的一個通項公式.
\((1)1,-\dfrac{1}{2}, \dfrac{1}{4},-\dfrac{1}{8}, \ldots\)
\((2)10 ,9 ,8 ,7 ,6 ,…\)
\((3)0 ,3 ,8 ,15 ,24 ,…\)
\((4) \dfrac{1}{2}, \dfrac{5}{6}, \dfrac{11}{12}, \dfrac{19}{20}, \dfrac{31}{30}\)
\((5)4 ,44 ,444 ,4444 ,….\)
 

參考答案

1.\(D\)
2.\(B\)
3.\((1) a_{n}=(-1)^{n+1} \times \dfrac{1}{2^{n-1}}\)

\((2) a_n=11-n\)
\((3) a_n=n^2-1\)
\((4)a_{n}=1-\dfrac{1}{n(n+1)}\)
\((5) a_{n}=\dfrac{4}{9} \times\left(10^{n}-1\right)\)
 

【方法二】\(a_n\)\(S_n\)的關系公式法

\({\color{Red}{適用范圍:}}\)若得知\(S_n\)\(a_n\)\(S_n\)的關系式,求數列通項公式.
\({\color{Red}{方法:}}\)利用\(a_n\)\(S_n\)的關系\(a_{n}=\left\{\begin{array}{cc} S_{1} & n=1 \\ S_{n}-S_{n-1} & n \geq 2 \end{array}\right.\),注意分類討論,最后確定\(a_1\)是否滿足\(a_n=f(n)\)\((n≥2)\).
 

【典題1】已知數列\(\{a_n\}\)的前\(n\)項和\(S_n\),滿足關系\(\lg \left(S_{n}+1\right)=n\).求\(\{a_n\}\)的通項公式.
【解析】\(\because \lg \left(S_{n}+1\right)=n\)
\(\therefore S_{n}=10^{n}-1\)
\(n≥2\)時,\(a_{n}=S_{n}-S_{n-1}=9 \times 10^{n-1}\)
\(n=1\)時,\(a_1=S_1=9\)滿足\(a_{n}=9 \times 10^{n-1}\)
\({\color{Red}{ (確定a_1是否滿足上式)}}\)
\(\therefore a_{n}=9 \times 10^{n-1}\left(n \in N^{*}\right)\).
\({\color{Red}{(最后等式才由n≥2變成n∈N^*)}}\)
 

【典題2】已知數列\(\{a_n\}\)}的前\(n\)項和\(S_n\)\(a_1=1\),滿足下列條件
\(∀n∈N^*\),\(a_n>0\)\(\qquad \qquad\) ②點\((a_n ,S_n)\)在函數\(f(x)=\dfrac{x^{2}+x}{2}\)的圖象上;
求數列\(\{a_n\}\)的通項\(a_n\)及前\(n\)項和\(S_n\).
【解析】由題意\(S_{n}=\dfrac{a_{n}^{2}+a_{n}}{2}\)
\(n≥2\)時,\(a_{n}=S_{n}-S_{n-1}=\dfrac{a_{n}^{2}+a_{n}}{2}-\dfrac{a_{n-1}^{2}+a_{n-1}}{2}\)
整理,得\(\left(a_{n}+a_{n-1}\right)\left(a_{n}-a_{n-1}-1\right)=0\)
\({\color{Red}{(因式分解)}}\)
\(∀n∈N^*\),\(a_n>0\),所以\(a_{n}+a_{n-1} \neq 0\)
\(a_{n}-a_{n-1}=1\)
\(a_1=1\)
\(∴\)數列\(\{a_n\}\)是首項為\(1\),公比為\(1\)的等差數列,
\(∴a_n=n\)\(S_{n}=\dfrac{n^{2}+n}{2}\)
 

【典題3】已知\(\{a_n\}\)中,\(a_1=1\),\(a_{n}=\dfrac{2 S_{n}^{2}}{2 S_{n}-1}\)\((n≥ 2)\),求\(a_n\).
【解析】\(n≥2\)時,\(a_{n}=S_{n}-S_{n-1}\)
\(\therefore S_{n}-S_{n-1}=\dfrac{2 S_{n}^{2}}{2 S_{n}-1}\)
\(\therefore S_{n-1}-S_{n}=2 S_{n} S_{n-1}\)
兩邊同除以\(S_{n} S_{n-1}\),得\(\dfrac{1}{S_{n}}-\dfrac{1}{S_{n-1}}=2\)
\({\color{Red}{ (該變式技巧了解下)}}\)
\({\color{Red}{ (上兩題是“消去”S_n得到數列\{a_n\}遞推公式,該題“消去”a_n得到數列\{S_n\}的遞推公式)}}\)
\(∴\)數列\(\left\{\dfrac{1}{S_{n}}\right\}\)為等差數列,公差為\(2\),首項為\(1\).
\(\therefore \dfrac{1}{S_{n}}=1+2(n-1)=2 n-1\)
解得\(S_{n}=\dfrac{1}{2 n-1}\)
\(\therefore a_{n}=S_{n}-S_{n-1}=\dfrac{1}{2 n-1}-\dfrac{1}{2 n-3}=\dfrac{-2}{(2 n-1)(2 n-3)}\)\((n≥ 2)\)
\({\color{Red}{(不要漏了大前提n≥ 2)}}\)
\(a_1=1\)不滿足\(a_{n}=\dfrac{-2}{(2 n-1)(2 n-3)}\)
\(\therefore a_{n}= \begin{cases}1, & n=1 \\ \dfrac{-2}{(2 n-1)(2 n-3)}, & n \geq 2\end{cases}\).
【點撥】當題中得知\(S_n\)\(a_n\)\(S_n\)的關系式,則可利用公式\(a_{n}=\left\{\begin{array}{cc} S_{1} & n=1 \\ S_{n}-S_{n-1} & n \geq 2 \end{array}\right.\),消去\(a_n\)\(S_n\),得到對應的遞推公式進而求解\(a_n\),但最后都要注意確定\(a_1\)是否滿足\(a_n=f(n)(n≥2)\).
 

鞏固練習

1 (★)已知數列\(\{a_n\}\)的前\(n\)項和\(S_n\)滿足\(S_n=n^2+n-1\),求數列\(\{a_n\}\)的通項公式.
 
 

2 (★★)已知無窮數列\(\{a_n\}\)的前\(n\)項和\(S_n\),並且\(a_n+S_n=1\),求\(\{a_n\}\)的通項公式.
 
 

3 (★★)已知數列\(\{a_n\}\)的前\(n\)項和\(S_n\),滿足\(a_2=-4\)\(2 S_{n}=n\left(a_{n}-7\right)\).求\(a_1\)和數列\(\{a_n\}\)的通項公式;
 
 

4 (★★★)設數列\(\{a_n\}\)的前\(n\)項和\(S_n\),已知\(a_1=2\)\(a_2=8\)\(S_{n+1}+4 S_{n-1}=5 S_{n}(n \geq 2)\),求數列\(\{a_n\}\)的通項公式;
 
 

參考答案

1.\(a_{n}=\left\{\begin{array}{c} 1, n=1 \\ 2 n, n \geq 2 \end{array}\right.\)
2.\(a_{n}=\left(\dfrac{1}{2}\right)^{n}\)
3.\(a_1=-7\),\(a_n=3n-10(n∈N^*)\)
4.\(a_{n}=2^{2 n-1}\)
 

【方法三】累加法

\({\color{Red}{適用范圍:}}\)遞推式為\(a_{n+1}=a_{n}+f(n)\).
\({\color{Red}{方法:}}\)得到\(\rfloor a_{n+1}-a_{n}=f(n)\),利用累加的形式求出\(a_n\).
 

【典題1】已知數列\(\{a_n\}\)滿足\(a_1=2\),\(a_{n+1}=a_{n}+\ln \left(1+\dfrac{1}{n}\right)\),求\(a_n\).
【解析】由條件知:\(a_{n+1}-a_{n}=\ln \left(1+\dfrac{1}{n}\right)=\ln \dfrac{n+1}{n}=\ln (n+1)-\ln n\)
\(∴n≥2\)
\(\left\{\begin{aligned} a_{n}-a_{n-1} &=\ln n-\ln (n-1) \\ a_{n-1}-a_{n-2} &=\ln (n-1)-\ln (n-2) \\ a_{4}-a_{3} &=\ln 4-\ln 3 \\ a_{3}-a_{2} &=\ln 3-\ln 2 \\ a_{2}-a_{1} &=\ln 2-\ln 1 \end{aligned}\right.\)
把以上\(n-1\)個式子累加得\(a_{n}-a_{1}=\ln n-\ln 1=\ln n\)
\(\therefore a_{n}=a_{1}+\ln n=\ln n+2 \quad(n \geq 2)\)
\(a_1=2\)也滿足\(a_{n}=\ln n+2\)
\(\therefore a_{n}=\ln n+2 \quad\left(n \in N^{*}\right)\).
 

【典題2】已知數列\(\{a_n\}\)滿足\(a_{n+1}=a_{n}+2 \times 3^{n}+1\),\(a_1=3\),求數列\(\{a_n\}\)的通項公式.
【解析】\(a_{n+1}=a_{n}+2 \times 3^{n}+1\)\(a_{n+1}-a_{n}=2 \times 3^{n}+1\)
\(∴n≥2\)時,
\(\begin{aligned} &a_{n}=\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{3}-a_{2}\right)+\left(a_{2}-a_{1}\right)+a_{1} \\ &=\left(2 \times 3^{n-1}+1\right)+\left(2 \times 3^{n-2}+1\right)+\cdots+\left(2 \times 3^{2}+1\right)+\left(2 \times 3^{1}+1\right)+3 \\ &=2\left(3^{n-1}+3^{n-2}+\cdots+3^{2}+3^{1}\right)+(n-1)+3 \\ &=2 \dfrac{3\left(1-3^{n-1}\right)}{1-3}+(n-1)+3 \\ &=3^{n}+n-1 \end{aligned}\)
\(a_1=3\)也滿足\(a_n=3^n+n-1\)
\(∴a_n=3^n+n-1 (n∈N^*)\).
 

鞏固練習

1 (★)數列\(\{a_n\}\)滿足\(a_1=3\),\(a_{n+1}-a_{n}=2 n-8\left(n \in N^{*}\right)\),則\(a_8=\)\(\underline{\quad \quad }\)
 
 
2 (★★)將正整數按一定的規則排成了如圖所示的三角形數陣.根據這個排列規則,數陣中第\(20\)行從左至右的第\(3\)個數是 \(\underline{\quad \quad}\)
image.png
 
 

3 (★★)已知數列\(\{a_n\}\)滿足\(a_{1}=\dfrac{1}{2}\),\(a_{n+1}=a_{n}+\dfrac{1}{n^{2}+n}\),求\(a_n\)
 
 

4 (★★★)已知數列\(\{a_n\}\)的前\(n\)項和\(S_n\)\(S_n+a_n=n+2\)\(n∈N^*\)
(1)證明:數列\(\left\{a_{n}-1\right\}\)為等比數列;
(2)若數列\(\left\{b_{n}\right\}\)滿足\(a_{n}=b_{n+1}-b_{n}+1\)\(b_1=1\),證明:\(b_n<2\)
 
 

參考答案

1.\(3\)
2.\(577\)
3.\(a_{n}=\dfrac{3}{2}-\dfrac{1}{n}\)
4.\((1)\)提示:定義法證明
\((2)\)提示:累加法求\(b_{n}=2-\dfrac{1}{2^{n}-1}\)
 

【方法四】累乘法

\({\color{Red}{適用范圍:}}\)遞推式為\(a_{n+1}=f(n) a_{n}\).
\({\color{Red}{方法:}}\)得到\(\dfrac{a_{n+1}}{a_{n}}=f(n)\),利用累乘的形式求出\(a_n\).
 

【典題1】已知\(\{a_n\}\)中,滿足\(a_1=1\),\(a_{n}=a_{1}+2 a_{2}+3 a_{3}+\cdots+(n-1) a_{n-1}(n \geq 2)\),求\(a_n\).
【解析】由已知,得\(a_{n+1}=a_{1}+2 a_{2}+3 a_{3}+\cdots+(n-1) a_{n-1}+n a_{n}\)
用此式減去已知式,得
\(n≥ 2\)時,\(a_{n+1}-a_{n}=n a_{n}\)
\(a_{n+1}=(n+1) a_{n} \Rightarrow \dfrac{a_{n+1}}{a_{n}}=n+1\)
\(a_2=a_1=1\)
\(\therefore\left\{\begin{array}{c} \dfrac{a_{n}}{a_{n-1}}=n \\ \dfrac{a_{n-1}}{a_{n-2}}=n-1 \\ \dfrac{a_{3}}{a_{2}}=3 \\ \dfrac{a_{2}}{a_{1}}=2 \end{array}\right.\)
將以上\(n-1\)個式子相乘,得\(\dfrac{a_{n}}{a_{1}}=\dfrac{n !}{2} (n≥ 2)\)
\(\therefore a_{n}=\dfrac{n !}{2} \quad(n \geq 2)\)
\(\therefore a_{n}= \begin{cases}1, & n=1 \\ \dfrac{n !}{2}, & n \geq 2\end{cases}\).
 

【典題2】設數列\(\{a_n\}\)是首項為1的正項數列,且\((n+1) a_{n+1}^{2}-n a_{n}^{2}+a_{n+1} a_{n}=0\), 求通項公式\(a_n\)
【解析】\((n+1) a_{n+1}^{2}-n a_{n}^{2}+a_{n+1} a_{n}=0\)
可得\(n\left(a_{n+1}^{2}-a_{n}^{2}\right)+\left(a_{n+1}^{2}+a_{n+1} a_{n}\right)=0\)
即有\(n\left(a_{n+1}-a_{n}\right)\left(a_{n+1}+a_{n}\right)+a_{n+1}\left(a_{n+1}+a_{n}\right)=0\)
即有\(\left[(n+1) a_{n+1}-n a_{n}\right]\left(a_{n+1}+a_{n}\right)=0\)
\(\{a_n\}\)是正項數列,可得\((n+1) a_{n+1}=n a_{n} \Rightarrow a_{n+1}=\dfrac{n}{n+1} a_{n}\)
\(a_{n}=\dfrac{n-1}{n} a_{n-1}=\dfrac{n-1}{n} \cdot \dfrac{n-2}{n-1} a_{n-2}\)\(=\cdots=\dfrac{n-1}{n} \cdot \dfrac{n-2}{n-1} \cdots \dfrac{2}{3} \cdot \dfrac{1}{2} a_{1}\)\(=\dfrac{1}{n} a_{1}=\dfrac{1}{n}(n \geq 2)\)
\(a_1=1\)也滿足\(a_{n}=\dfrac{1}{n}\)
\(∴a_{n}=\dfrac{1}{n},n∈N^*\)
 

鞏固練習

1 (★★)已知數列\(a_1\)\(\dfrac{a_{2}}{a_{1}}\)\(\dfrac{a_{3}}{a_{2}}\),⋯,\(\dfrac{a_{n}}{a_{n-1}}\)是首項為\(8\),公比為\(\dfrac{1}{2}\)的等比數列,則\(a_4\)等於\(\underline{\quad \quad }\).
 
 
2 (★★)在數列\(\{a_n\}\)中,\(a_1=a_2=1\)\(a_3=2\),且數列\(\left\{\dfrac{a_{n+1}}{a_{n}}\right\}\)為等比數列,則\(a_n=\)\(\underline{\quad \quad }\)
 
 

3 (★★)已知\(a_1=3\),\(a_{n+1}=\dfrac{3 n-1}{3 n+2} a_{n}(n \geq 1)\),求\(a_n\).
 
 

4 (★★)已知\(a_1=1\),\(a_{n}=n(a_{n+1}-a_{n})(n\in N^*)\),求數列\(\{a_n\}\)通項公式.
 
 

參考答案

1.\(64\)
2.\(2^{\dfrac{(n-2)(n-1)}{2}}\)
3.\(a_{n}=\dfrac{6}{3 n-1}\)
4.\(a_n=n\)
 

【方法五】構造法

對於一些不是等差等比數列的數列,求其通項公式,通過構造等差或等比數列來求其通項公式是一種很好的思路,其中的情況多樣,方法有待定系數法、階差法、取倒數法、取對數法等.我們要理解其中構造的技巧,做到舉一反三.
 

情況1

遞推公式為\(a_{n+1}=p a_{n}+q\)(\(p\),\(q\)為常數,\(p≠1\)\(pq≠0\))
\({\color{Red}{待定系數法:}}\)把原遞推公式轉化為:\(a_{n+1}+t=p\left(a_{n}+t\right)\),其中\(t=\dfrac{q}{p-1}\),再利用換元法轉化為等比數列\(\left\{a_{n}+t\right\}\)求解;
\({\color{Red}{逐項相減法(階差法):}}\)\(a_{n+1}=p a_{n}+q\)\(a_{n}=p a_{n-1}+q\),兩式相減得\(a_{n+1}-a_{n}=p\left(a_{n}-a_{n-1}\right)\),即\(\left\{a_{n+1}-a_{n}\right\}\)是等比數列,再用累加法求解.
 

【典題1】已知數列\(\{a_n\}\)中,\(a_1=1\),\(a_{n+1}=2 a_{n}+3\), 求\(a_n\).
【解析】\({\color{Red} {方法一\quad 待定系數法}}\)
設遞推公式\(a_{n+1}=2 a_{n}+3\)可以轉化為\(a_{n+1}+t=2\left(a_{n}+t\right)\)(\(t\)是個常數),
\(a_{n+1}=2 a_{n}+t\)
與已知條件\(a_{n+1}=2 a_{n}+3\)比較可知\(t=3\)
\({\color{Red}{ (比較系數可求參數t )}}\)
故遞推公式為\(a_{n+1}+3=2\left(a_{n}+3\right)\)
所以\(\left\{a_{n}+3\right\}\)是首項為\(a_1+3=4\),公比為\(2\)的等比數列,
\({\color{Red}{ (構造等比數列)}}\)
\(a_{n}+3=4 \times 2^{n-1}=2^{n+1}\)
\(\therefore a_{n}=2^{n+1}-3\).

\({\color{Red}{方法二 \quad 逐項相減法}}\)
\(\because a_{n+1}=2 a_{n}+3\)\(\therefore a_{n}=2 a_{n-1}+3\)
兩式相減得\(a_{n+1}-a_{n}=2\left(a_{n}-a_{n-1}\right)(n \geq 2)\)
\(∴\)數列\(\left\{a_{n+1}-a_{n}\right\}\)是以\(a_2-a_1=5-1=4\)為首項,公比\(q=2\)的等比數列, \({\color{Red}{(構造等比數列)}}\)
\(\therefore a_{n+1}-a_{n}=2^{n+1}\)
\({\color{Red}{(形如a_{n+1}-a_{n}=f(n)用累加法)}}\)
\(\therefore a_{n+1}=\left(a_{n+1}-a_{n}\right)+\left(a_{n}-a_{n-1}\right)+\cdots\left(a_{2}-a_{1}\right)+a_{1}\)\(=2^{n+1}+2^{n}+\cdots+4+1=2^{n+2}-3\)
\(\therefore a_{n}=2^{n+1}-3\).
 
 

情況2

遞推公式為\(a_{n+1}=p a_{n}+k n+b\)(\(p\),\(k\),\(b\)為常數,\(p≠1\)\(pk≠0\))
\({\color{Red}{待定系數法:}}\) \(a_{n+1}=p a_{n}+k n+b\)可化為\(a_{n+1}+\lambda_{1}(n+1)+\lambda_{2}=A\left[a_{n}+\lambda_{1} n+\lambda_{2}\right]\)的形式,得到等比數列\(\left\{a_{n}+\lambda_{1} n+\lambda_{2}\right\}\)求出\(a_n\).
\({\color{Red}{逐項相減法(階差法):}}\)\(a_{n+1}=p a_{n}+k n+b\)\(a_{n}=p a_{n-1}+k(n-1)+b\),兩式相減得\(a_{n+1}-a_{n}=p\left(a_{n}-a_{n-1}\right)+k\),即令\(b_{n}=a_{n+1}-a_{n}\)\(b_{n}=p b_{n-1}+k\),再用遞推公式形如\(a_{n+1}=p a_{n}+q\)的方法求解.
 

【典題1】設數列\(\{a_n\}\)\(a_1=4\),\(a_{n}=3 a_{n-1}+2 n-1(n \geq 2)\),求\(a_n\).
【解析】\({\color{Red}{方法一 \quad 待定系數法}}\)
\(a_{n}+\lambda_{1} n+\lambda_{2}=3\left[a_{n-1}+\lambda_{1}(n-1)+\lambda_{2}\right]\)
化簡得:\(a_{n}=3 a_{n-1}+2 \lambda_{1} n+2 \lambda_{2}-3 \lambda_{1}\)
與已知條件\(a_{n}=3 a_{n-1}+2 n-1\)比較系數,
所以\(\left\{\begin{array}{c} 2 \lambda_{1}=2 \\ 2 \lambda_{2}-3 \lambda_{1}=-1 \end{array}\right.\), 解得\(\left\{\begin{array}{l} \lambda_{1}=1 \\ \lambda_{2}=1 \end{array}\right.\)
\({\color{Red}{ (比較系數可求參數λ_1,λ_2)}}\)
所以\(a_{n}+n+1=3\left(a_{n-1}+n\right)\)
\(∴\)數列\(\left\{a_{n}+n+1\right\}\)是以\(a_1+2=6\)為首項,\(3\)為公比的等比數列.
\(\therefore a_{n}+n+1=6 \times 3^{n-1}=2 \times 3^{n}\)
\(∴a_n=2×3^n-n-1\).
\({\color{Red}{方法二 \quad 逐項相減法(階差法)}}\)
\(\because a_{n}=3 a_{n-1}+2 n-1(n \geq 2)\)
\(\therefore a_{n+1}=3 a_{n}+2 n+1\)
由②-①得\(a_{n+1}-a_{n}=3\left(a_{n}-a_{n-1}\right)+2\)
\(b_{n}=a_{n+1}-a_{n}\),則\(b_{n}=3 b_{n-1}+2\)
\({\color{Red}{ (回歸遞推公式形如a_{n}=p a_{n-1}+q的形式)}}\)
\(\therefore b_{n}+1=3\left(b_{n-1}+1\right)\)
\(∴\)數列\(\left\{b_{n}+1\right\}\)是以首項\(b_1+1=a_2-a_1+1=15-4+1=12\),公比\(q=3\)的等比數列,
\(b_{n}+1=12 \times 3^{n-1}=4 \times 3^{n} \Rightarrow b_{n}=4 \times 3^{n}-1\)
\(\therefore a_{n+1}=\left(a_{n+1}-a_{n}\right)+\left(a_{n}-a_{n-1}\right)+\cdots\left(a_{2}-a_{1}\right)+a_{1}\) \({\color{Red}{(累加法)}}\)
\(=\left(4 \times 3^{n}-1\right)+\left(4 \times 3^{n-1}-1\right)+\cdots+\left(4 \times 3^{1}-1\right)+4\)
\(=2 \times 3^{n+1}-n-2\)
\(∴a_n=2×3^n-n-1\).
【點撥】二種方法比較還是待定系數法過程顯得簡潔些,形如\(a_{n+1}=p a_{n}+q\)\(a_{n+1}=p a_{n}+k n+b\)都可用待定系數法構造等比數列來求\(a_n\),那是否形如\(a_{n+1}=p a_{n}+f(n)\)都可行呢?那形如“\(a_{n+1}=p a_{n}+\)二次函數”如何?試試題目:已知\(a_1=6\)\(a_{n+1}=2 a_{n}-n^{2}+n+2\),求\(a_n\).(答案:\(a_{n}=2^{n+1}+n^{2}+n\)).
 

情況3

遞推公式為\(a_{n}=\dfrac{p a_{n-1}}{q a_{n-1}+t}\)(\(p\),\(q\),\(t\)為常數)
\({\color{Red}{取倒數法:}}\)遞推公式兩邊取倒數,\(\dfrac{1}{a_{n}}=\dfrac{q a_{n-1}+t}{p a_{n-1}}=\dfrac{q}{p}+\dfrac{t}{p} \cdot \dfrac{1}{a_{n-1}}\),令\(b_{n}=\dfrac{1}{a_{n}}\),若\(p=t\),則問題\(b_n\)是等差數列;若\(p≠t\),問題轉化為遞推公式為:\(a_{n+1}=p_{1} a_{n}+q_{1}\)的方法處理.
 

【典題1】已知數列\(\{a_n\}\)中,\(a_1=1\)\(a_{n}=\dfrac{a_{n-1}}{5 a_{n-1}+2}(n \geq 2)\),求通項公式\(a_n\).
【解析】\(a_{n}=\dfrac{a_{n-1}}{5 a_{n-1}+2}\)
兩邊取倒數,得\(\dfrac{1}{a_{n}}=\dfrac{5 a_{n-1}+2}{a_{n-1}}=2 \cdot \dfrac{1}{a_{n-1}}+5\)
\(b_{n}=\dfrac{1}{a_{n}}\),則\(b_{n}=2 b_{n-1}+5\)
\(\therefore b_{n}+5=2\left(b_{n-1}+5\right)\)
\(∴\)數列\(\left\{b_{n}+5\right\}\)是首項為\(b_{1}+5=\dfrac{1}{a_{1}}+5=6\),公比為\(2\)的等比數列, \({\color{Red}{ (構造了等比數列)}}\)
\(\therefore b_{n}+5=6 \times 2^{n-1}=3 \times 2^{n} \Rightarrow b_{n}=3 \times 2^{n}-5\)
\(\therefore a_{n}=\dfrac{1}{b_{n}}=\dfrac{1}{3 \times 2^{n}-5}\).
 
【典題2】已知\(\{a_n\}\)中,\(a_1=1\)\(S_n\)是數列的前\(n\)項和,且\(S_{n+1}=\dfrac{S_{n}}{4 S_{n}+3}(n \geq 1)\),求\(a_n\).
【解析】遞推式\(S_{n+1}=\dfrac{S_{n}}{4 S_{n}+3}\)
\({\color{Red}{ (可利用取倒數法求出數列S_n的通項S_n,再用a_n與S_n的關系式求a_n)}}\)
兩邊取倒數可變形為\(\dfrac{1}{S_{n+1}}=3 \cdot \dfrac{1}{S_{n}}+4\)(1)
則有\(\dfrac{1}{s_{n+1}}+2=3\left(\dfrac{1}{s_{n}}+2\right)\).
故數列\(\left\{\dfrac{1}{S_{n}}+2\right\}\)是以\(\dfrac{1}{S_{1}}+2=3\)為首項,\(3\)為公比的等比數列.
\(\therefore \dfrac{1}{S_{n}}+2=3 \cdot 3^{n-1}=3^{n}\)\(\therefore S_{n}=\dfrac{1}{3^{n}-2}\).
\(n≥ 2\)\(a_{n}=S_{n}-S_{n-1}\)\(=\dfrac{1}{3^{n}-2}-\dfrac{1}{3^{n-1}-2}=\dfrac{-2 \cdot 3^{n}}{3^{2 n}-8 \cdot 3^{n}+12}\).
所以數列\(\{a_n\}\)的通項公式是\(a_{n}= \begin{cases}1, & (n=1) \\ \dfrac{-2 \cdot 3^{n}}{3^{2 n}-8 \cdot 3^{n}+12}, & (n \geq 2)\end{cases}\).
 

情況4

遞推公式為\(a_{n+1}=p a_{n}+q^{n}\)(其中\(p\)\(q\)均為常數,\(pq(p-1)(q-1)≠0\)). (或\(a_{n+1}=p a_{n}+r q^{n}\),其中\(p\)\(q\),\(r\)均為常數) .
\({\color{Red}{方法一}}\) 在原遞推公式兩邊同除以\(q^{n+1}\),得\(\dfrac{a_{n+1}}{q^{n+1}}=\dfrac{p}{q} \cdot \dfrac{a_{n}}{q^{n}}+\dfrac{1}{q}\),令\(b_{n}=\dfrac{a_{n}}{q^{n}}\),得\(b_{n+1}=\dfrac{p}{q} b_{n}+\dfrac{1}{q}\)再待定系數法解決;
\({\color{Red}{方法二}}\) 在原遞推公式兩邊同除以\(p^{n+1}\),得\(\dfrac{a_{n+1}}{p^{n+1}}=\dfrac{a_{n}}{p^{n}}+\dfrac{1}{p} \cdot\left(\dfrac{q}{p}\right)^{n}\), 令\(b_{n}=\dfrac{a_{n}}{p^{n}}\),得\(b_{n+1}=b_{n}+\dfrac{1}{p} \cdot\left(\dfrac{q}{p}\right)^{n}\)再用累加法求解;
\({\color{Red}{方法三}}\) 待定系數法 設\(a_{n+1}+\lambda q^{n+1}=p\left(a_{n}+\lambda q^{n}\right)\),通過比較系數,求出\(λ\),構造出等比數列\(\left\{a_{n}+\lambda q^{n}\right\}\)再求解,此時要求\(p≠q\),否則該法失效.
 

【典題1】已知數列\(\{a_n\}\)滿足\(a_{n+1}=2 a_{n}+4 \times 3^{n}\),\(a_1=9\),求數列\(\{a_n\}\)的通項公式.
【解析】\({\color{Red}{方法一\quad (兩邊同除以3^{n+1})}}\)
\(a_{n+1}=2 a_{n}+4 \times 3^{n}\)兩邊同除以\(3^{n+1}\),得\(\dfrac{a_{n+1}}{3^{n+1}}=\dfrac{2}{3} \cdot \dfrac{a_{n}}{3^{n}}+\dfrac{4}{3}\)
\({\color{Red}{(轉化為遞推公式為a_{n+1}=p a_{n}+q的情況)}}\)
\(b_{n}=\dfrac{a_{n}}{3^{n}}\),則\(b_{n+1}=\dfrac{2}{3} b_{n}+\dfrac{4}{3}\)
\(\therefore b_{n+1}-4=\dfrac{2}{3}\left(b_{n}-4\right)\)
\(\therefore b_{n}-4=\left(b_{1}-4\right) \cdot\left(\dfrac{2}{3}\right)^{n-1}=-\left(\dfrac{2}{3}\right)^{n-1}\)\(\Rightarrow b_{n}=4-\left(\dfrac{2}{3}\right)^{n-1}\)
\(\therefore a_{n}=4 \cdot 3^{n}-3 \cdot 2^{n-1}\).
\({\color{Red}{方法二\quad (兩邊同除以2^{n+1}) }}\)
\(a_{n+1}=2 a_{n}+4 \times 3^{n}\)兩邊同除以\(2^{n+1}\),得\(\dfrac{a_{n+1}}{2^{n+1}}=\dfrac{a_{n}}{2^{n}}+2 \cdot\left(\dfrac{3}{2}\right)^{n}\)
\(\therefore b_{n}=\left(b_{n}-b_{n-1}\right)+\left(b_{n-1}-b_{n-2}\right)+\cdots\left(b_{2}-b_{1}\right)+b_{1}\) \({\color{Red}{(累加法)}}\)
\(=2 \cdot\left(\dfrac{3}{2}\right)^{n-1}+2 \cdot\left(\dfrac{3}{2}\right)^{n-2}+\cdots+2 \cdot\left(\dfrac{3}{2}\right)^{1}+\dfrac{9}{2}=6 \cdot\left(\dfrac{3}{2}\right)^{n-1}-\dfrac{3}{2}(n \geq 2)\)
\(\because b_{1}=\dfrac{9}{2}\)也滿足上式
\(\therefore b_{n}=6 \cdot\left(\dfrac{3}{2}\right)^{n-1}-\dfrac{3}{2}(n \in N)\),
\(\therefore a_{n}=2^{n} \cdot b_{n}=4 \cdot 3^{n}-3 \cdot 2^{n-1}\).
\({\color{Red}{方法三\quad 待定系數法}}\)
\(a_{n+1}+\lambda \cdot 3^{n+1}=2\left(a_{n}+\lambda \cdot 3^{n}\right)\)
化簡得\(a_{n+1}=2 a_{n}-\lambda \cdot 3^{n}\)
與已知條件\(a_{n+1}=2 a_{n}+4 \times 3^{n}\)比較可知\(λ=-4\)
\(a_{n+1}-4 \cdot 3^{n+1}=2\left(a_{n}-4 \cdot 3^{n}\right)\)
\(\therefore a_{n}-4 \cdot 3^{n}=\left(a_{1}-12\right) \cdot 2^{n-1}=-3 \cdot 2^{n-1}\)
\(\therefore a_{n}=4 \cdot 3^{n}-3 \cdot 2^{n-1}\).
【點撥】方法技巧主要都是體現在通過構造等差等比數列和把問題轉化為前面“已知模型”去.
 

情況5

遞推公式為\(a_{n+1}=p a_{n}^{r}\)
\({\color{Red}{方法一\quad 對數變換法:}}\)該類型是等式兩邊取對數后轉化為前邊的類型,然后再用遞推法或待定系法構造等比數列求出通項.
兩邊取對數得
\(\lg a_{n+1}=\lg \left(p a_{n}^{r}\right) \Rightarrow \lg a_{n+1}=\lg p+\operatorname{rlg} a_{n}\)
\(b_{n}=\lg a_{n}\)
\(∴\)原等式變為\(b_{n+1}=r b_{n}+\lg p\)即變為基本型.
\({\color{Red}{方法二\quad 迭代法}}\),反復迭代使用\(a_{n+1}=p a_{n}^{r}\),一直推到\(a_1\)
\(a_{n}=p a_{n-1}^{r}=p\left(p a_{n-2}^{r}\right)^{r}=p^{r+1} a_{n-2}^{r^{2}}\)\(=p^{r+1}\left(p a_{n-3}^{r}\right)^{r^{2}}=p^{r^{2}+r+1} a_{n-3}^{r^{3}}=\cdots=f(r) a_{1}^{r^{n-1}}\).
 

【典題1】設正項數列\(\{a_n\}\)滿足\(a_1=1\)\(a_{n}=3 a_{n-1}^{2}(n \geq 2)\), 求通項公式\(a_n\)
【解析】\({\color{Red}{方法一 \quad 對數變換法}}\)
\(a_{n}=3 a_{n-1}^{2}(n \geq 2)\)
將等式兩邊取對數得\(\log _{3} a_{n}=1+2 \log _{3} a_{n-1}\)\(\Rightarrow \log _{3} a_{n}+1=2\left(\log _{3} a_{n-1}+1\right)\)
\({\color{Red}{(為了計算簡便取對數log_3x)}}\)
\(\left\{\log _{3} a_{n}+1\right\}\)是以\(\log _{3} a_{1}+1=1\)為首項,公比為\(2\)等比數列,
\(\therefore \log _{3} a_{n}+1=2^{n-1}\)
\(\therefore a_{n}=3^{2^{n-1}-1}\).
\({\color{Red}{方法二 \quad 迭代法}}\)
\(a_{n}=3 a_{n-1}^{2}(n \geq 2)\)可迭代得
\(a_{n}=3 a_{n-1}^{2}=3\left(3 a_{n-2}^{2}\right)^{2}=3 \cdot 3^{2} a_{n-2}^{2^{2}}\)\(=3 \cdot 3^{2}\left(3 a_{n-3}^{2}\right)^{2^{2}}=3 \cdot 3^{2} \cdot 3^{4} a_{n-3}^{2^{3}}=\cdots\)\(=3 \cdot 3^{2} \cdot 3^{4} \cdot 3^{2^{n-2}} a_{1}^{2^{n-1}}=3^{2^{n-1}-1}\)
\({\color{Red}{(在迭代的過程中,逐一保持“原始數值”,找到數值變化的規律,比如指數與下標的關系之類的) }}\)
 

鞏固練習

1 (★★)數列\(\{a_n\}\)中,\(a_1=1\)\(a_{n+1}=\dfrac{2 a_{n}}{a_{n}+2}\left(n \in \boldsymbol{N}^{*}\right)\),則\(\dfrac{2}{101}\)是這個數列的第 \(\underline{\quad \quad}\) 項.
 
 

2 (★★)若數列\(\{a_n\}\)中,\(a_1=3\)\(a_{n+1}=a_{n}^{2}\)(\(n\)是正整數),則它的通項公式是\(a_n=\)\(\underline{\quad \quad}\) .
 
 

3 (★★)已知數列\(\{a_n\}\)滿足\(a_{1}=\dfrac{5}{2}\)\(a_{n}=3 a_{n-1}+1\)\(\left(n \geq 2, n \in \boldsymbol{N}^{*}\right)\).求數列\(\{a_n\}\)的通項公式.
 
 

4 (★★)已知數列\(\{a_n\}\)中,當\(n≥2\)時,\(a_{n}=\dfrac{a_{n-1}}{3 a_{n-1}+1}\),\(a_1=1\),求通項公式\(a_n\).
 
 

5 (★★)已知數列\(\{a_n\}\)滿足\(a_{1}=\dfrac{7}{3}\)\(a_{n+1}=3 a_{n}-4 n+2\).求通項公式\(a_n\).
 
 

6 (★★)已知數列\(\{a_n\}\)中,\(a_{1}=\dfrac{5}{6}\)\(a_{n+1}=\dfrac{1}{3} a_{n}+\left(\dfrac{1}{2}\right)^{n+1}\),求\(a_n\).
 
 

7 (★★)數列\(\{a_n\}\)\(n\)項和\(S_{n}=4-a_{n}-\dfrac{1}{2^{n-2}}\),求通項公式\(a_n\).
 
 

8 (★★★★)已知數列\(\{a_n\}\)的各項都是正數,且滿足\(a_0=1\)\(a_{n+1}=\dfrac{1}{2} a_{n}\left(4-a_{n}\right)\),\(n∈N\).求數列\(\{a_n\}\)的通項公式\(a_n\).
 
 

參考答案

1.\(100\)
2.\(a_{n}=3^{2^{n-1}}\)
3.\(a_{n}=3^{n}-\dfrac{1}{2}\)
4.\(a_{n}=\dfrac{1}{3 n-2}\)
5.\(a_{n}=3^{n-2}+2 n\)
6.\(a_{n}=\dfrac{3}{2^{n}}-\dfrac{2}{3^{n}}\)
7.\(a_{n}=\dfrac{n}{2^{n-1}}\)
8.\(a_{n}=2-\left(\dfrac{1}{2}\right)^{2^{n}-1}\)
 

【方法六】分\(n\)奇偶討論法

在有些數列問題中,有時要對\(n\)的奇偶性進行分類討論以方便問題的處理.
\({\color{Red}{形如a_{n+1}+a_n=f(n)型 }}\)
(1)若\(a_{n+1}+a_{n}=d\)(\(d\)是常數),則數列\(\left\{a_{n}\right\}\)為“等和數列”,它是一個周期數列,周期為\(2\),其通項分奇數項和偶數項來討論.
(2)若\(f(n)\)\(n\)的函數(非常數)時,方法一是構造轉化為\(a_{n+1}-a_{n}=f(n)\)型,再通過累加法來求出通項;方法二是用逐差法得\(a_{n+1}-a_{n-1}=f(n)-f(n-1)\),分奇數項和偶數項來討論.
 

【典題1】數列\(\left\{a_{n}\right\}\)中,\(a_1=0\)\(a_{n}+a_{n+1}=2 n\),求通項公式.
【解析】\({\color{Red}{ 方法一 構造轉化為a_{n+1}-a_n=f(n)型}}\)
\(b_{n}=(-1)^{n} a_{n}\)
\(b_{n+1}-b_{n}=(-1)^{n+1} a_{n+1}-(-1)^{n} a_{n}=(-1)^{n+1}\left(a_{n+1}+a_{n}\right)=(-1)^{n+1} \cdot 2 n\)
\({\color{Red}{(成功把遞推公式轉化為a_{n+1}-a_{n}=f(n)型,接着用累加法) }}\)
\(∴n≥2\)時,得
\(\begin{aligned} &b_{n}-b_{n-1}=(-1)^{n} \cdot 2(n-1) \\ &b_{n}-b_{n-2}=(-1)^{n-1} \cdot 2(n-2) \\ &\cdots \cdots \\ &b_{2}-b_{1}=(-1)^{2} \cdot 2 \end{aligned}\)
把以上\(n-1\)個等式累加得,
\(b_{n}=2\left[(-1)^{n} \cdot(n-1)+(-1)^{n-1} \cdot(n-2)+\cdots+(-1)^{2}\right]\)
\({\color{Red}{(出現(-1)^n可分n奇偶數討論) }}\)
①當\(n\)是奇數時,
\(b_{n}=2\{[-(n-1)+(n-2)]+\cdots+[-2+1]\} \quad (*)\)
\(=2 \times[(-1)+\cdots+(-1)]=2 \cdot\left(-1 \times \dfrac{n-1}{2}\right)=1-n\)
\({\color{Red}{(注意到和式(*)中共有n-1項,當n是奇數,每相鄰兩個數之和為-1,共有\dfrac{n-1}{2}組) }}\)
此時\(b_n=-a_n\),則\(a_n=n-1\)
\(a_1=0\)也滿足上式,故當\(n\)是奇數時,\(a_n=n-1\)
②當\(n\)是偶數時,由\(a_{n}+a_{n+1}=2 n\)\(a_{n}=2 n-a_{n+1}=2 n-n=n\)
\({\color{Red}{ (求出n是奇數時a_n=n-1,再利用已知條件a_{n}+a_{n+1}=2 n求出n是偶數時的a_n,不對和式(*)討論,這會簡單些) }}\)
故a\(a_{n}=\left\{\begin{array}{l} n-1, n \text { 為奇數 } \\ n, \quad n \text { 為偶數 } \end{array}\right.\).
\({\color{Red}{方法二 逐差法 }}\)
\(\because a_{n}+a_{n+1}=2 n\)
\(∴n≥2\)時,\(a_{n-1}+a_{n}=2 n-2\)
兩式相減得\(a_{n+1}-a_{n-1}=2\)
\(∴a_1 ,a_3 ,a_5\),…,構成以\(a_1=0\)為首項,\(2\)為公差的等差數列;
\(a_2 ,a_4 ,a_6\) ,…,構成以\(a_2=2\)為首項,\(2\)為公差的等差數列;
\(\therefore a_{2 k-1}=a_{1}+2(k-1)=2 k-2=(2 k-1)-1 \text {, }\)
\(a_{2 k}=a_{2}+2(k-1)=2 k\)
\({\color{Red}{ (對奇數項a_{2 k-1}和偶數項a_{2 k}用等差數列公式求出表達式)}}\)
\(a_{n}= \begin{cases}n-1, & n \text { 為奇數 } \\ n, & n \text { 為偶數 }\end{cases}\).
\({\color{Red}{(最后還是要用n表達回a_n)}}\)
 

\({\color{Red}{形如a_n a_{n+1}=f(n)型 }}\)
(1) 若\(a_{n} a_{n+1}=d\)(\(d\)是常數),則數列\(\left\{a_{n}\right\}\)為“等積數列”,它是一個周期數列,周期為\(2\),其通項分奇數項和偶數項來討論.
(2)若\(f(n)\)\(n\)的函數(非常數)時,可用逐商法得\(\dfrac{a_{n+1}}{a_{n-1}}=\dfrac{f(n)}{f(n-1)}\),分奇數項和偶數項來討論.
 

【典題1】已知數列\(\left\{a_{n}\right\}\)中,\(a_1=1\)\(a_{n} a_{n+1}=2 \cdot\left(\dfrac{1}{4}\right)^{n}\),求通項公式.
【解析】\(a_{n} a_{n+1}=2 \cdot\left(\dfrac{1}{4}\right)^{n}\)\(a_{n+1} a_{n+2}=2 \cdot\left(\dfrac{1}{4}\right)^{n+1}\)
兩式相除,得\(\dfrac{a_{n+2}}{a_{n}}=\dfrac{1}{4}\)\({\color{Red}{ (逐商法) }}\)
\(a_1\),\(a_3\) ,… ,\(a_{2 n-1}\) ,…和\(a_2\),\(a_4\),… ,\(a_{2 n}\) ,…是公比為\(\dfrac{1}{4}\)的等比數列,
\(a_1=1\) ,\(a_{2}=\dfrac{1}{2}\)
\(a_{2 k-1}=a_{1} \cdot\left(\dfrac{1}{4}\right)^{k-1}=4^{1-k}\),即\(n\)為奇數時,\(a_{n}=2^{1-n}\)
\(a_{2 k}=a_{2} \cdot\left(\dfrac{1}{4}\right)^{k-1}=2^{1-2 k}\),即當\(n\)為偶數時,\(a_{n}=2^{1-n}\)
綜合得\(a_{n}=2^{1-n}\).
 

鞏固練習

1 (★★★) 已知數列\(\left\{a_{n}\right\}\)的前\(n\)項和\(S_n\)滿足\(S_{n}-S_{n-2}=3 \cdot\left(-\dfrac{1}{2}\right)^{n-1}(n \geq 3)\),且\(S_1=1\)\(S_{2}=-\dfrac{3}{2}\),求數列\(\left\{a_{n}\right\}\)通項公式.
 
 
 
 

參考答案

  1. 【答案】\(a_{n}=\left\{\begin{array}{l} 4-3 \cdot\left(\dfrac{1}{2}\right)^{n-1}, n \text { 為奇數 } \\ -4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}, n \text { 為偶數 } \end{array}\right.\).
    【解析】依題意易求\(a_1=1\)\(a_{2}=-\dfrac{5}{2}\)\(a_{3}=\dfrac{13}{4}\)
    \(\because S_{n}-S_{n-2}=3\left(-\dfrac{1}{2}\right)^{n-1}(n \geq 3)\)
    \(\therefore a_{n}+a_{n-1}=3\left(-\dfrac{1}{2}\right)^{n-1}(n \geq 3)\)
    \(n≥4\)時,\(a_{n-1}+a_{n-2}=3\left(-\dfrac{1}{2}\right)^{n-2}\)
    兩式相減得\(a_{n}-a_{n-2}=9 \cdot\left(-\dfrac{1}{2}\right)^{n-1}\)
    \(n\)是偶數時,\(a_{n}=\left(a_{n}-a_{n-2}\right)+\left(a_{n}-a_{n-2}\right)+\cdots+\left(a_{4}-a_{2}\right)+a_{2}\)
    \(=9 \cdot\left(-\dfrac{1}{2}\right)^{n-1}+9 \cdot\left(-\dfrac{1}{2}\right)^{n-3}+\cdots+9 \cdot\left(-\dfrac{1}{2}\right)^{3}-\dfrac{5}{2}\)
    \(=9 \times \dfrac{-\dfrac{1}{8}\left[1-\left(\dfrac{1}{4}\right)^{\frac{n-2}{2}}\right]}{1-\dfrac{1}{4}}-\dfrac{5}{2}=-4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}(n \geq 4)\)
    \(\because a_{2}=-\dfrac{5}{2}\)滿足\(a_{n}=-4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}\)
    \(\therefore a_{n}=-4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}\)(\(n\)是偶數)
    \(n\)是奇數時,由\(a_{n}+a_{n-1}=3\left(-\dfrac{1}{2}\right)^{n-1}(n \geq 3)\)
    可得\(a_{n}=3\left(-\dfrac{1}{2}\right)^{n-1}-a_{n-1}\)\(=3\left(\dfrac{1}{2}\right)^{n-1}-\left[-4+3 \cdot\left(\dfrac{1}{2}\right)^{n-2}\right]=4-3\left(\dfrac{1}{2}\right)^{n-1}\)
    \(∵a_1=1\)滿足\(a_{n}=4-3\left(\dfrac{1}{2}\right)^{n-1}\)
    \(\therefore a_{n}=-4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}\) (\(n\)是奇數)
    \(\therefore a_{n}=\left\{\begin{array}{l} 4-3 \cdot\left(\dfrac{1}{2}\right)^{n-1}, n \text { 為奇數 } \\ -4+3 \cdot\left(\dfrac{1}{2}\right)^{n-1}, n \text { 為偶數 } \end{array}\right.\).
     

【方法七】數學歸納法

適用范圍:數列前幾項的數值出現一定規律或數值結構具有特點.
方法:由數列前幾項用不完全歸納猜測出數列的通項公式,再利用數學歸納法證明其正確性.
 
【典題1】已知數列\(\left\{a_{n}\right\}\)滿足\(a_{n+1}=a_{n}+\dfrac{8(n+1)}{(2 n+1)^{2}(2 n+3)^{2}}\)\(a_{1}=\dfrac{8}{9}\),求數列\(\left\{a_{n}\right\}\)的通項公式.
【解析】\({\color{Red}{ 方法一 \quad 累加法}}\)
\(\because a_{n+1}=a_{n}+\dfrac{8(n+1)}{(2 n+1)^{2}(2 n+3)^{2}}\)
\(\therefore a_{n+1}-a_{n}=\dfrac{1}{(2 n+1)^{2}}-\dfrac{1}{(2 n+3)^{2}}\)\({\color{Red}{ (要觀察出式子可裂項) }}\)
則當\(n≥2\)時,\(a_{n}=\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{2}-a_{1}\right)+a_{1}\)
\(=\dfrac{1}{(2 n-1)^{2}}-\dfrac{1}{(2 n+1)^{2}}+\dfrac{1}{(2 n-3)^{2}}-\dfrac{1}{(2 n-1)^{2}}+\cdots+\dfrac{1}{3^{2}}-\dfrac{1}{5^{2}}+\dfrac{8}{9}\)
\(=\dfrac{1}{9}-\dfrac{1}{(2 n+1)^{2}}+\dfrac{8}{9}=1-\dfrac{1}{(2 n+1)^{2}}\)
驗證當\(n=1\)時,上式成立.
\(\therefore a_{n}=1-\dfrac{1}{(2 n+1)^{2}}\)
\({\color{Red}{方法二 \quad 歸納法 }}\)
\(\because a_{1}=\dfrac{8}{9}=1-\dfrac{1}{9}\)\(a_{n+1}=a_{n}+\dfrac{8(n+1)}{(2 n+1)^{2}(2 n+3)^{2}}\)
\(\therefore a_{2}=\dfrac{24}{25}=1-\dfrac{1}{25}\)\(a_{3}=\dfrac{48}{49}=1-\dfrac{1}{49}\)
猜想\(a_{n}=1-\dfrac{1}{(2 n+1)^{2}}\)
\({\color{Red}{(通過遞推公式算出前3項,根據數值特點(可看回觀察法求a_n的技巧)猜想出通項公式a_n) }}\)
證明如下:①\(n=1\)時,結論成立;
②假設\(n=k\)時,結論成立,即\(a_{k}=1-\dfrac{1}{(2 k+1)^{2}}\)
\(n=k+1\)時,
\(a_{k+1}=a_{k}+\dfrac{8(k+1)}{(2 k+1)^{2}(2 k+3)^{2}}\)\(=1-\dfrac{1}{(2 k+1)^{2}}+\dfrac{8(k+1)}{(2 k+1)^{2}(2 k+3)^{2}}=1-\dfrac{1}{(2 k+3)^{2}}\)
\(n=k+1\)時,結論成立.
綜上,\(a_{n}=1-\dfrac{1}{(2 n+1)^{2}}\).
 
 

【典題2】已知數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\)\(a_n>0\)\(S_{n}=\dfrac{1}{2}\left(a_{n}+\dfrac{n}{a_{n}}\right)\), 求數列\(\left\{a_{n}\right\}\)通項公式.
【解析】\(\because S_{n}=\dfrac{1}{2}\left(a_{n}+\dfrac{n}{a_{n}}\right)\)
\(n=1\)時,有\(S_{1}=\dfrac{1}{2}\left(a_{1}+\dfrac{1}{a_{1}}\right) \Rightarrow a_{1}^{2}=1 \Rightarrow a_{1}=1\)
\(n=2\)時,
\(S_{2}=\dfrac{1}{2}\left(a_{2}+\dfrac{2}{a_{2}}\right) \Rightarrow 1+a_{2}=\dfrac{1}{2}\left(a_{2}+\dfrac{2}{a_{2}}\right) \Rightarrow a_{2}^{2}+2 a_{2}=2\)\(\Rightarrow\left(a_{2}+1\right)^{2}=3 \Rightarrow a_{2}=\sqrt{3}-1\)
當n=3時,有\(S_{3}=\dfrac{1}{2}\left(a_{3}+\dfrac{3}{a_{3}}\right) \Rightarrow \sqrt{3}+a_{3}=\dfrac{1}{2}\left(a_{3}+\dfrac{3}{a_{3}}\right) \Rightarrow a_{3}^{2}+2 \sqrt{3} a_{3}=3\)
\(\Rightarrow\left(a_{3}+\sqrt{3}\right)^{2}=6 \Rightarrow a_{3}=\sqrt{6}-\sqrt{3}\)
\({\color{Red}{ (在計算的過程中也會發現一些規律,有助於猜想)}}\)
\(a_{1}=1=\sqrt{1}-\sqrt{0}, a_{2}=\sqrt{3}-\sqrt{1}, a_{3}=\sqrt{6}-\sqrt{3}\)可猜想\(a_{n}=\sqrt{\dfrac{n(n+1)}{2}}-\sqrt{\dfrac{n(n-1)}{2}}\).
\({\color{Red}{ (通過觀察法可得數列1,3,6…的通項是\dfrac{n(n+1)}{2},數列0,1,3…的通項是\dfrac{n(n-1)}{2})}}\)
以下利用數學歸納法證明,
\(n=1\)時,結論顯然成立;
②假設\(n=k\)時,結論成立,即\(a_{k}=\sqrt{\dfrac{k(k+1)}{2}}-\sqrt{\dfrac{k(k-1)}{2}}\)
\(n=k+1\)時,有\(a_{k+1}=S_{k+1}-S_{k}=\dfrac{1}{2}\left(a_{k+1}+\dfrac{k+1}{a_{k+1}}\right)-\dfrac{1}{2}\left(a_{k}+\dfrac{k}{a_{k}}\right)\)
\(\therefore a_{k+1}=\dfrac{k+1}{a_{k+1}}-\left(a_{k}+\dfrac{k}{a_{k}}\right)=\dfrac{k+1}{a_{k+1}}-\sqrt{2 k(k+1)}\)
\(\therefore a_{k+1}^{2}+\sqrt{2 k(k+1)} a_{k+1}=k+1 \Rightarrow\left(a_{k+1}+\sqrt{\dfrac{k(k+1)}{2}}\right)^{2}=\dfrac{(k+2)(k+1)}{2}\)
\(\therefore a_{k+1}=\sqrt{\dfrac{(k+2)(k+1)}{2}}-\sqrt{\dfrac{k(k+1)}{2}}\) \({\color{Red}{ (其計算過程與算a_1,a_2 ,a_3時類似) }}\)
\(n=k+1\)時,結論成立.
綜上,\(a_{n}=\sqrt{\dfrac{n(n+1)}{2}}-\sqrt{\dfrac{n(n-1)}{2}}\).
 
 

鞏固練習

1 (★★)\(0<\theta<\dfrac{\pi}{2}\),已知\(a_{1}=2 \cos \theta\)\(a_{n+1}=\sqrt{2+a_{n}}\),猜想\(a_{n}=\)(  )
A. \(2 \cos \dfrac{\theta}{2^{n}}\) \(\qquad \qquad \qquad\) B. \(2 \cos \dfrac{\theta}{2^{n-1}}\) \(\qquad \qquad \qquad\) C. \(2 \cos \dfrac{\theta}{2^{n+1}}\) \(\qquad \qquad \qquad\)D. \(2 \sin \dfrac{\theta}{2^{n}}\)
 
 

2 (★★)若數列\(\left\{a_{n}\right\}\)滿足\(a_1=1\) ,\(a_{n+1}=2 a_{n}+3 \times 2^{n-1}\)計算\(a_2\)\(a_3\)\(a_4\)的值,由此歸納出\(a_n\)的公式,並證明你的結論.
 
 

3 (★★★)在各項均為正數的數列\(\left\{a_{n}\right\}\)中,\(S_n\)為數列\(\left\{a_{n}\right\}\)的前\(n\)項和,\(S_{n}=\dfrac{1}{2}\left(a_{n}+\dfrac{1}{a_{n}}\right)\),求其通項公式.
 
 

參考答案

  1. 【答案】\(B\)
    【解析】由題意\(a_{n+1}=\sqrt{2+a_{n}}\),可得\(a_{2}=\sqrt{2+a_{1}}=\sqrt{2+2 \cos \theta}=2 \cos \dfrac{\theta}{2}\)
    \(a_{3}=\sqrt{2+2 \cos \dfrac{\theta}{2}}=2 \cos \dfrac{\theta}{4}\)\(a_{4}=2 \cos \dfrac{\theta}{2^{3}}\),
    猜想\(a_{n}=2 \cos \dfrac{\theta}{2^{n-1}}\),故選:\(B\)
  2. 【答案】\(a_2=5\),\(a_3=16\),\(a_4=44\),\(a_{n}=(3 n-1) \cdot 2^{n-2}\)
    【解析】\(\because a_{2}=2 a_{1}+3 \times 2^{\circ}=2 \times 1+3 \times 2^{\circ}\)
    \(a_{3}=2\left(2 \times 1+3 \times 2^{\circ}\right)+3 \times 2^{1}=2^{2} \times 1+2 \times 3 \times 2^{1}\)
    \(a_{4}=2\left(2^{2} \times 1+2 \times 3 \times 2^{1}\right)+3 \times 2^{2}=2^{3} \times 1+3 \times 3 \times 2^{2}\)
    猜想\(a_{n}=2^{n-1}+(n-1) \times 3 \times 2^{n-2}=(3 n-1) \cdot 2^{n-2}\)
    用數學歸納法證明:
    1°當\(n=1\)時,\(a_{1}=2^{-1} \times 2=1\),結論正確;
    2°假設\(n=k\)時,\(a_{k}=2^{k-2}(3 k-1)\)正確,
    \(∴\)\(n=k+1\)時,
    \(a_{k+1}=2 a_{k}+3 \times 2^{k-1}=2 \times 2^{k-2}(3 k-1)+3 \times 2^{k-1}=2^{k-1}(3 k+2)\)
    \(=2^{(k+1)-2}[(3(k+1)-1)]\)
    結論正確;
    由1°、2°知對\(n \in N^{*}\)\(a_{n}=2^{n-2}(3 n-1)\)
  3. 【答案】\(a_{n}=\sqrt{n}-\sqrt{n-1}\left(n \in N^{*}\right)\)
    【解析】\(n=1\)時,\(S_{1}=\dfrac{1}{2}\left(a_{1}+\dfrac{1}{a_{1}}\right)\)\(∵a_1=S_1\),\(a_n>0\),解得\(a_1=1\),
    \(n=2\)時,\(S_{2}=a_{1}+a_{2}=\dfrac{1}{2}\left(a_{2}+\dfrac{1}{a_{2}}\right)\),得\(a_2^2+2a_2-1=0\)\(\therefore a_{2}=\sqrt{2}-1\)
    \(n=3\)時,\(S_{3}=a_{1}+a_{2}+a_{3}=\dfrac{1}{2}\left(a_{3}+\dfrac{1}{a_{3}}\right)\),得\(a_{3}^{2}+2 \sqrt{2} a_{3}-1=0\)\(\therefore a_{3}=\sqrt{3}-\sqrt{2}\)
    猜想\(a_{n}=\sqrt{n}-\sqrt{n-1}\),下面用數學歸納法證明,
    \(n=1\)時,\(a_{1}=1=\sqrt{1}-\sqrt{0}\),顯然成立,
    假設當\(n=k\)時,\(a_{k}=\sqrt{k}-\sqrt{k-1}\left(k \geq 1, k \in N^{*}\right)\)
    \(n=k+1\)時,
    \(a_{k+1}=S_{k+1}-S_{k}=\dfrac{1}{2}\left(a_{k+1}+\dfrac{1}{a_{k+1}}\right)-\dfrac{1}{2}\left(a_{k}+\dfrac{1}{a_{k}}\right)\)\(=\dfrac{1}{2}\left(a_{k+1}+\dfrac{1}{a_{k+1}}\right)-\dfrac{1}{2}\left(\sqrt{k}-\sqrt{k-1}+\dfrac{1}{\sqrt{k}-\sqrt{k-1}}\right)\)
    \(=\dfrac{1}{2}\left(a_{k+1}+\dfrac{1}{a_{k+1}}\right)-\sqrt{k}\)
    \(\therefore a_{k+1}^{2}+2 \sqrt{k} a_{k+1}-1=0\),解得\(a_{k+1}=\sqrt{k+1}-\sqrt{k}\)
    即當\(n=k+1\)時也滿足\(a_{n}=\sqrt{n}-\sqrt{n-1}\)
    綜上可得\(a_{n}=\sqrt{n}-\sqrt{n-1}\left(n \in N^{*}\right)\).
     

【方法八】 不動點法(特征根法) (選學內容)

不動點的定義:函數\(f(x)\)的定義域為\(D\),若存在\(x_0∈D\),使得\(f(x_0 )=x_0\)成立,則稱\(x_0\)\(f(x)\)的不動點.

\({\color{Red}{形如a_{n+1}=\dfrac{A a_{n}+B}{C a_{n}+D}的數列 }}\)
對於數列\(a_{n+1}=\dfrac{A a_{n}+B}{C a_{n}+D}\)\(a_1=m\),\(n∈N^*\)(\(A、B、C、D\)是常數且\(C≠0\) ,\(AD-BC≠0\))
其特征方程為\(x=\dfrac{A x+B}{C x+D}\),變形為\(C x^{2}+(D-A) x-B=0\)
若有二異根\(α\) ,\(β\),則可令\(\dfrac{a_{n+1}-\alpha}{a_{n+1}-\beta}=c \cdot \dfrac{a_{n}-\alpha}{a_{n}-\beta}\)(其中\(c\)是待定常數),代入\(a_1\),\(a_2\)的值可求得\(c\)值.
這樣數列\(\left\{\dfrac{a_{n}-\alpha}{a_{n}-\beta}\right\}\)是首項為\(\dfrac{a_{1}-\alpha}{a_{1}-\beta}\),公比為\(c\)的等比數列,於是這樣可求得\(a_n\)
若有二重根\(α=β\),則可令\(\dfrac{1}{a_{n+1}-\alpha}=\dfrac{1}{a_{n}-\alpha}+c\)(其中\(c\)是待定常數),代入\(a_1\),\(a_2\)的值可求得\(c\)值.
這樣數列\(\left\{\dfrac{1}{a_{n}-\alpha}\right\}\)是首項為\(\dfrac{1}{a_{1}-\alpha}\),公差為\(c\)的等差數列,於是這樣可求得\(a_n\)
此方法又稱不動點法.
 

【典題1】已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=2\) ,\(a_{n}=\dfrac{a_{n-1}+2}{2 a_{n-1}+1}(n \geq 2)\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
【解析】\(x=\dfrac{x+2}{2 x+1}\),化簡得\(2x^2-2=0\),解得\(x_1=1\) ,\(x_2=-1\)
\(\dfrac{a_{n+1}-1}{a_{n+1}+1}=c\cdot \dfrac{a_{n}-1}{a_{n}+1}\)
\(a_1=2\)\(a_{2}=\dfrac{4}{5}\),可得\(c=-\dfrac{1}{3}\)
\(∴\)數列\(\left\{\dfrac{a_{n}-1}{a_{n}+1}\right\}\)是以\(\dfrac{a_{1}-1}{a_{1}+1}=\dfrac{1}{3}\)為首項,以\(-\dfrac{1}{3}\)為公比的等比數列,
\(\therefore \dfrac{a_{n}-1}{a_{n}+1}=\dfrac{1}{3} \cdot\left(-\dfrac{1}{3}\right)^{n-1}=(-1)^{n-1} \cdot\left(\dfrac{1}{3}\right)^{n}\)
\(\therefore a_{n}=\dfrac{3^{n}-(-1)^{n}}{3^{n}+(-1)^{n}}\).
 

【典題2】已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=2\) ,\(a_{n}=2-\dfrac{1}{a_{n-1}}(n \geq 2)\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
【解析】其特征方程為\(x=2-\dfrac{1}{x}\),解得\(x=1\)
\(\dfrac{1}{a_{n}-1}=\dfrac{1}{2-\dfrac{1}{a_{n-1}}-1}=\dfrac{1}{1-\dfrac{1}{a_{n-1}}}=\dfrac{a_{n-1}}{a_{n-1}-1}=1+\dfrac{1}{a_{n-1}-1}\)
\(∴\)數列\(\left\{\dfrac{1}{a_{n}-1}\right\}\)是以\(\dfrac{1}{a_{1}-1}=1\)為首項,公差為\(1\)的等差數列,
\(\dfrac{1}{a_{n}-1}=n\),即\(a_{n}=\dfrac{n+1}{n}\).
 

\({\color{Red}{形如a_{n+2}=p a_{n+1}+q(p,q是常數)的數列 }}\)
\(p≠0\)\(1\)\(q≠0\)時,稱\(x=px+q\)是數列\(\left\{a_{n}\right\}\)的一階特征方程,其根\(x=\dfrac{q}{1-p}\)叫做特征根方程的特征根,這時數列\(\left\{a_{n}\right\}\)的通項公式為\(a_{n}=\left(a_{1}-\dfrac{q}{1-p}\right) p^{n-1}+\dfrac{q}{1-p}\).
 

【典題1】已知數列\(\left\{a_{n}\right\}\)中,\(a_1=1\)\(a_{n}=2 a_{n-1}+1(n \geq 2)\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
【解析】遞推關系對應的遞歸函數為\(f(x)=2x+1\),由\(f(x)=x\)得不動點為\(-1\)
\(\therefore a_{n}-(-1)=2 a_{n-1}+1-(-1)\)
\(\therefore a_{n}+1=2\left(a_{n-1}+1\right)\)
\(\therefore a_{n}+1=\left(a_{1}+1\right) \cdot 2^{n-1}=2^{n}\)\(\therefore a_{n}=2^{n}-1\).
 

\({\color{Red}{形如a_{1}=m_{1}, a_{2}=m_{2}, a_{n+2}=p a_{n+1}+q a_{n}(p,q是常數)的數列}}\)
\(x^2=px+q\)是數列\(\left\{a_{n}\right\}\)的二階特征方程,其根\(x_1 ,x_2\)叫做特征方程的特征根.
若有二異根\(x_1 ,x_2\),則可令\(a_{n}=c_{1} x_{1}^{n}+c_{2} x_{2}^{n}\)(\(c_1\) ,\(c_2\)是待定常數)
若有二重根\(x_1=x_2\),則可令\(a_{n}=\left(c_{1}+n c_{2}\right) x_{1}^{n}\)(\(c_1\) ,\(c_2\)是待定常數)
再利用\(a_1=m_1\),\(a_2=m_2\)可求得\(c_1\),\(c_2\),進而求得\(a_n\)
 

【典題1】在數列\(\left\{a_{n}\right\}\)中,\(a_1=-1\),\(a_2=2\)\(a_{n+2}=5 a_{n+1}-6 a_{n}\left(n \in N^{*}\right)\),求通項公式\(a_n\).
\({\color{Red}{方法一 \quad 特征根法}}\)
【解析】的特征方程是\(x^2-5x+6=0\), 解得\(x_1=2 ,x_2=3\)
\(\therefore a_{n}=c_{1} 2^{n-1}+c_{2} 3^{n-1}\)
又由\(a_1=-1\),\(a_2=2\),得\(\left\{\begin{array}{l} c_{1}+c_{2}=-1 \\ 2 c_{1}+3 c_{2}=2 \end{array}\right.\),解得\(\left\{\begin{array}{c} c_{1}=-5 \\ c_{2}=4 \end{array}\right.\)
\(a_{n}=-5 \cdot 2^{n-1}+4 \cdot 3^{n-1}\).
\({\color{Red}{ 方法二 \quad 待定系數法}}\)
\(a_{n+2}=5 a_{n+1}-6 a_{n}\)式可化為:\(a_{n+2}+\lambda a_{n+1}=\eta\left(a_{n+1}+\lambda a_{n}\right)\)
\(\left\{\begin{array}{c} \eta-\lambda=5 \\ \eta \lambda=-6 \end{array}\right.\),解得\(\left\{\begin{array}{c} \eta=2 \\ \lambda=-3 \end{array}\right.\)\(\left\{\begin{array}{c} \eta=3 \\ \lambda=-2 \end{array}\right.\)
不妨取\(λ=-2\)\(a_{n+2}=5 a_{n+1}-6 a_{n}\)式可化為:\(a_{n+2}-2 a_{n+1}=3\left(a_{n+1}-2 a_{n}\right)\)
\(\left\{a_{n+1}-2 a_{n}\right\}\)是一個等比數列,首項\(a_2-2a_1=4\),公比為\(3\)
\(\therefore a_{n+1}=2 a_{n}+4 \cdot 3^{n-1}\)
兩邊同時除以\(3^{n}\)\(\dfrac{a_{n+1}}{3^{n}}=\dfrac{2}{3} \cdot \dfrac{a_{n}}{3^{n-1}}+\dfrac{4}{3}\)
\(b_{n}=\dfrac{a_{n}}{3^{n-1}}\) ,得\(b_{n+1}=\dfrac{2}{3} b_{n}+\dfrac{4}{3}\)_,_則\(b_{n+1}-4=\dfrac{2}{3}\left(b_{n}-4\right)\)
\(b_1-4=a_1-4=-5\)\(\therefore b_{n}-4=-5 \cdot\left(\dfrac{2}{3}\right)^{n-1}\)
\(b_{n}=\dfrac{a_{n}}{3^{n-1}}\)\(\therefore a_{n}=4 \cdot 3^{n-1}-5 \cdot 2^{n-1}\).
 

鞏固練習

1 (★★) 設數列滿足\(a_{1}=2\) ,\(a_{n+1}=\dfrac{5 a_{n}+4}{2 a_{n}+7}\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
 
 

2 (★★)已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=2\)\(a_{n+1}=\dfrac{2 a_{n}-1}{4 a_{n}+6}\left(n \in N^{*}\right)\) ,求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
 
 

3 (★★)已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=2\) ,\(a_2=3\), \(a_{n+2}=3a_{n+1}-2a_n (n∈N^*)\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\).
 
 

4 (★★)已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=1\) ,\(a_2=2\), \(4 a_{n+2}=4 a_{n+1}-a_n\left(n \in N^{*})\right.\),求數列\(\left\{a_{n}\right\}\)的通項\(a_n\)
 
 

5 (★★)求斐波拉契數列\(1,1,2,3,5,8,……\),的通項公式.
 
 
 

參考答案

  1. 【答案】\(a_{n}=\dfrac{4 \times 3^{n-1}+2}{4 \times 3^{n-1}-1}\)
    【解析】對等式兩端同時加參數\(t\),得
    \(a_{n+1}+t=\dfrac{5 a_{n}+4}{2 a_{n}+7}+t=\dfrac{(2 t+5) a_{n}+7 t}{2 a_{n}+7}=(2 t+5) \dfrac{a_{n}+7 t+4}{2 a_{n}+7}\)
    \(t=\dfrac{7 t+4}{2 t+5}\),解得\(t=1\)\(-2\),代入\(a_{n+1}+t=\dfrac{5 a_{n}+4}{2 a_{n}+7}+t\)
    \(a_{n+1}-1=3 \times \dfrac{a_{n}-1}{2 a_{n}+7}\)\(a_{n+1}+2=9 \times \dfrac{a_{n}+2}{2 a_{n}+7}\)
    兩式相除得\(\dfrac{a_{n+1}-1}{a_{n+1}+1}=\dfrac{1}{3} \times \dfrac{a_{n}-1}{a_{n}+2}\),即\(\left\{\dfrac{a_{n}-1}{a_{n}+2}\right\}\)是首項為\(\dfrac{a_{1}-1}{a_{1}+2}=\dfrac{1}{4}\),公比為\(\dfrac{1}{3}\)的等比數列,
    \(\therefore \dfrac{a_{n}-1}{a_{n}+2}=\dfrac{1}{4} \times 3^{1-n}\),解得\(a_{n}=\dfrac{4 \times 3^{n-1}+2}{4 \times 3^{n-1}-1}\).
  2. 【答案】\(a_{n}=\dfrac{13-5 n}{10 n-6}\)
    【解析】\(x=\dfrac{2 x-1}{4 x+6}\),即\(4x^2+4x+1=0\),解得\(x_{1}=x_{2}=-\dfrac{1}{2}\)
    \(\dfrac{1}{a_{n+1}+\dfrac{1}{2}}=\dfrac{1}{a_{n}+\dfrac{1}{2}}+c\)
    \(a_1=2\)\(a_{2}=\dfrac{3}{14}\),求得\(c=1\)
    \(∴\)數列\(\left\{\dfrac{1}{a_{n}+\frac{1}{2}}\right\}\)是以\(\dfrac{1}{a_{1}+\frac{1}{2}}=\dfrac{2}{5}\)為首項,以\(1\)為公差的等差數列,
    \(\therefore \dfrac{1}{a_{n}+\frac{1}{2}}=\dfrac{2}{5}+n-1=n-\dfrac{3}{5}\) \(\therefore a_{n}=\dfrac{13-5 n}{10 n-6}\).
  3. 【答案】\(a_{n}=1+2^{n-1}\)
    【解析】其特征方程為\(x^2=3x-2\),解得\(x_1=1,x_2=2\)
    \(a_n=c_1 1^n+c_2 2^n=c_1+c_2 2^n\)
    \(a_{1}=2, a_{2}=3\)\(\left\{\begin{array}{l} c_{1}+2 c_{2}=2 \\ c_{1}+4 c_{2}=3 \end{array}\right.\),解得\(\left\{\begin{array}{l} c_{1}=1 \\ C_{2}=\dfrac{1}{2} \end{array}\right.\)\(\therefore a_{n}=1+2^{n-1}\)
  4. 【答案】\(a_{n}=\dfrac{3 n-2}{2^{n-1}}\)
    【解析】其特征方程為\(4 x^{2}=4 x-1\),解得\(x_{1}=x_{2}=\dfrac{1}{2}\)
    \(a_{n}=\left(c_{1}+n c_{2}\right)\left(\dfrac{1}{2}\right)^{n}\)
    \(a_1=1,a_2=2\)\(\left\{\begin{array}{c} \dfrac{1}{2}\left(c_{1}+c_{2}\right)=1 \\ \dfrac{1}{4}\left(c_{1}+2 c_{2}\right)=2 \end{array}\right.\),解得\(\left\{\begin{array}{c} c_{1}=-4 \\ c_{2}=6 \end{array}\right.\)\(\therefore a_{n}=\dfrac{3 n-2}{2^{n-1}}\)
  5. 【答案】\(a_{n}=\dfrac{1}{\sqrt{5}}\left[\left(\dfrac{1+\sqrt{5}}{2}\right)^{n}-\left(\dfrac{1-\sqrt{5}}{2}\right)^{n}\right]\)
    【解析】\(x^2=x+1\),解得\(x_{1}=\dfrac{1-\sqrt{5}}{2}, \quad x_{2}=\dfrac{1+\sqrt{5}}{2}\)
    \(a_{n}=c_{1}\left(\dfrac{1-\sqrt{5}}{2}\right)^{n}+c_{2}\left(\dfrac{1+\sqrt{5}}{2}\right)^{n}\)
    \(a_1=1,a_2=1\)\(\left\{\begin{array}{c} \dfrac{1-\sqrt{5}}{2} c_{1}+\dfrac{1+\sqrt{5}}{2} c_{2}=1 \\ \left(\dfrac{1-\sqrt{5}}{2}\right)^{2} c_{1}+\left(\dfrac{1+\sqrt{5}}{2}\right)^{2} c_{2}=1 \end{array}\right.\),解得\(\left\{\begin{array}{l} c_{1}=-\dfrac{1}{\sqrt{5}} \\ c_{2}=\dfrac{1}{\sqrt{5}} \end{array}\right.\)
    .


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM