專題 求數列的前n項和


\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)【【高分突破系列】高二數學下學期同步知識點剖析精品講義
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)

選擇性必修第二冊同步提高,難度3顆星!

模塊導圖

知識剖析

求數列的前項和是數列中常考的一大專題,其方法有公式法、倒序相加(乘)法、分組求和法與裂項相消法等,在掌握這些方法的時候要注意方法的適用范圍,其中的計算量有些大,技巧性也較強,需要多加以理解與總結.
 

經典例題

【方法一】公式法

若已知數列是等差或等比數列,求其前\(n\)項和可直接使用對應的公式;若求和的式子對應某些公式,也可以直接使用.常見如下
\((1)\)等差數列求和公式\(S_{n}=\dfrac{n\left(a_{1}+a_{n}\right)}{2}=n a_{1}+\dfrac{n(n-1)}{2} d\)
\((2)\)等比數列求和公式\(S_{n}=\left\{\begin{array}{l} n a_{1}, q=1 \\ \dfrac{a_{1}\left(1-q^{n}\right)}{1-q}, q \neq 1 \end{array}\right.\)
\((3)\)\(1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\dfrac{n(n+1)(2 n+1)}{6}\)
\((4)\)\(1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\dfrac{n(n+1)}{2}\right]^{2}\)
 

【典題1】求和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\),先思考它是幾項之和再求和.
【解析】和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\)相當於數列\(3\)\(6\)\(12\)、…、\(3 \cdot 2^{n-2}\)的和,
顯然它是首項\(a_1=3\),公比\(q=2\)的等比數列,
設前\(n\)項和為\(S_n\)
\(a_{n}=a_{1} \cdot q^{n-1}=3 \cdot 2^{n-1}\)
而和式最后一項是\(3 \cdot 2^{n-2}=a_{n-1}\),是第\(n-1\)項,
故和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\)只有\(n-1\)項而已,
\(3+6+12+\cdots+3 \cdot 2^{n-2}\)
\({\color{Red}{ (切勿想當然和式等於S_n)}}\)
\(=S_{n-1}=\dfrac{a_{1}\left(1-q^{n-1}\right)}{1-q}=\dfrac{3\left(1-2^{n-1}\right)}{1-2}=3\left(2^{n-1}-1\right)\).
【點撥】求和式時特別要注意確定項數,以第一個數為首項,判斷最后一項為第幾項(第\(n\)項、第\(n-1\)項?)便可.
 

【典題2】已知等比數列\(\left\{a_{n}\right\}\)\(n\)項和為\(S_n\),且\(S_{n}=a_{n+1}-\dfrac{1}{32}\left(n \in \boldsymbol{N}^{*}\right)\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)若\(b_{n}=\log _{2} a_{n}\),求數列\(\left\{\left|b_{n}\right|\right\}\)的前\(n\)項和\(T_n\)
【解析】(1)由於\(S_{n}=a_{n+1}-\dfrac{1}{32}\)①,
\(n=1\)時,\(S_{1}=a_{2}-\dfrac{1}{32} \Rightarrow a_{2}=a_{1}+\dfrac{1}{32}\)
\(n≥2\)時,\(S_{n-1}=a_{n}-\dfrac{1}{32}\)②,
①-②得\(a_{n}=a_{n+1}-a_{n}\),即\(a_{n+1}=2 a_{n}(n \geq 2)\)
\(∵\)數列\(\left\{a_{n}\right\}\)為等比數列,
\(∴a_2=2a_1\),又\(a_{2}=a_{1}+\dfrac{1}{32}\),解得\(a_{1}=\dfrac{1}{32}\)
故數列\(\left\{a_{n}\right\}\)是以\(\dfrac{1}{32}\)為首項,\(2\)為公比的等比數列,
所以\(a_{n}=2^{n-6}\)
(2)\(b_{n}=\log _{2} a_{n}=n-6\)
所以\(\left|b_{n}\right|=\left\{\begin{array}{l} 6-n, n<6 \\ n-6, n \geq 6 \end{array}\right.\)
\({\color{Red}{(遇到絕對值,則可利用|x|=\left\{\begin{array}{c} x, x \geq 0 \\ -x, x<0 \end{array}\right.去掉絕對值,則求前n項和T_n時要注意分類討論) }}\)
\(n<6\)時,
\(T_{n}=-b_{1}-b_{2}-\cdots-b_{n}=-\left(b_{1}+b_{2}+\cdots+b_{n}\right)\)
\(=-\left[-5 n+\dfrac{n(n-1)}{2}\right]=-\dfrac{n^{2}-11 n}{2}=\dfrac{11 n-n^{2}}{2}\)
\({\color{Red}{(b_n=n-6是等差數列,可由前n項和公式S_{n}=n a_{1}+\dfrac{n(n-1)}{2} d得b_{1}+\cdots+b_{n}=\dfrac{n^{2}-11 n}{2}) }}\)
\(n≥6\)時,
\(\begin{aligned} T_{n} &=-b_{1}-\cdots-b_{5}+b_{6}+\cdots+b_{n} \\ &=\left(b_{1}+b_{2}+\cdots+b_{n}\right)-2\left(b_{1}+\cdots+b_{5}\right) \\ &=\dfrac{n^{2}-11 n}{2}-2 \times \dfrac{5^{2}-11 \times 5}{2}=\dfrac{n^{2}-11 n}{2}+30 \end{aligned}\)
\(\therefore T_{n}=\left\{\begin{array}{l} \dfrac{11 n-n^{2}}{2}, n<6 \\ \dfrac{n^{2}-11 n}{2}+30, n \geq 6 \end{array}\right.\)
【點撥】當確保數列為等差數列或等比數列,便可直接使用對應的前\(n\)項和公式,這需要明確等差數列通項公式形如\(a_n=kn+b\),等比數列通項公式形如\(a_n=A\cdot B^n\).
 

鞏固練習

1(★★)求和式\(1+4+7+⋯+(3n+1)\).
 
 
2(★★)已知\(\left\{a_{n}\right\}\)是等差數列,公差\(d≠0\)\(a_1=1\),且\(a_1\),\(a_3\),\(a_9\)成等比數列,求數列\(\left\{2^{a_{n}}\right\}\)的前\(n\)項和\(S_n\)
 
 

3(★★)已知等差數列\(\left\{a_{n}\right\}\)前三項的和為\(-3\),前三項的積為\(15\)
(1)求等差數列\(\left\{a_{n}\right\}\)的通項公式;
(2)若公差\(d>0\),求數列\(\left\{\left|a_{n}\right|\right\}\)的前\(n\)項和\(T_n\)
 
 

4(★★★)\(\left\{a_{n}\right\}\)是公比大於\(1\)的等比數列,\(S_n\)為數列\(\left\{a_{n}\right\}\)的前\(n\)項和.已知\(S_3=7\),且\(a_1+3\)\(3a_2\)\(a_3+4\)構成等差數列.
(1)求數列\(\left\{a_{n}\right\}\)的等差數列.
(2)令\(b_{n}=\ln a_{3 n+1}\),求數列\(\left\{b_{n}\right\}\)的前\(n\)項和\(T_n\)
 
 
 

參考答案

1.\(\dfrac{3 n^{2}+5 n+2}{2}\)
2.\(S_{n}=2^{n+1}-2\)
3.\((1) a_n=4n-9\)\(a_n=7-4n\)\((2) T_{n}= \begin{cases}5, & n=1 \\ 2 n^{2}-7 n+12, & n \geq 2\end{cases}\)
4.\((1) a_{n}=2^{n-1}\)\((2) T_{n}=\dfrac{3 \ln 2}{2} n(n+1)\)

 

【方法二】 倒序相加(乘)法

1 對於某個數列\(\left\{a_{n}\right\}\),若滿足\(a_{1}+a_{n}=a_{2}+a_{n-1}\)\(=\cdots=a_{k}+a_{n-k+1}\),則求前\(n\)項和\(S_n\)可使用倒序相加法.
具體解法:設\(S_{n}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\)
把①反序可得\(S_{n}=a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}\)
由①+②得\(2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{2}+a_{n-1}\right)+\cdots+\left(a_{n-1}+a_{2}\right)+\left(a_{n}+a_{1}\right)\)\(\Rightarrow S_{n}=\dfrac{\left(a_{1}+a_{n}\right) n}{2}\).
2 對於某個數列\(\left\{a_{n}\right\}\),若滿足\(a_{1} a_{n}=a_{2} a_{n-1}=\cdots=a_{k} a_{n-k+1}\),則求前\(n\)項積\(T_n\)可使用倒序相乘法.具體解法類同倒序相加法.
 

【典題1】\(f(x)=\dfrac{1}{4^{x}+2}\),利用課本中推導等差數列前\(n\)項和的公式的方法,可求得\(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)\)的值為\(\underline{\quad \quad}\)
【解析】\(a+b=1\)
\(f(a)+f(b)=\dfrac{1}{4^{a}+2}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}}{\left(4^{a}+2\right) 4^{b}}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}}{4+2 \cdot 4^{b}}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}+2}{2\left(4^{b}+2\right)}=\dfrac{1}{2}\)
所以\(f(-3)+f(4)=\dfrac{1}{2}\)\(f(-2)+f(3)=\dfrac{1}{2}\)\(f(-1)+f(2)=\dfrac{1}{2}\)\(f(0)+f(1)=\dfrac{1}{2}\)
\(f(-3)+f(-2)+\cdots+f(0)+\cdots+f(3)+f(4)\)\(=4 \times \dfrac{1}{2}=2\)
【點撥】課本中推導等差數列前\(n\)項和的公式的方法就是倒序相加法.
 

【典題2】\(\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 3^{\circ}+\cdots+\sin ^{2} 88^{\circ}+\sin ^{2} 89^{\circ}\)的值
【解析】\(\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 3^{\circ}+\cdots+\sin ^{2} 88^{\circ}+\sin ^{2} 89^{\circ}\)…………. ①
將①式右邊反序得
\(S=\sin ^{2} 89^{\circ}+\sin ^{2} 88^{\circ}+\cdots+\sin ^{2} 3^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 1^{\circ}\)…………..②
①+②得
\(\begin{aligned} 2 S &=\left(\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ}\right)+\left(\sin ^{2} 2^{\circ}+\sin ^{2} 88^{\circ}\right)+\cdots+\left(\sin ^{2} 89^{\circ}+\sin ^{2} 1^{\circ}\right) \\ &=\left(\sin ^{2} 1^{\circ}+\cos ^{2} 1^{\circ}\right)+\left(\sin ^{2} 2^{\circ}+\cos ^{2} 2^{\circ}\right)+\cdots+\left(\sin ^{2} 89^{\circ}+\cos ^{2} 89^{\circ}\right) \\ &=89 \end{aligned}\)
\(∴S=44.5\).

【點撥】對於某個數列\(\left\{a_{n}\right\}\),若滿足\(a_{1}+a_{n}\)\(=a_{2}+a_{n-1}=\cdots=a_{k}+a_{n-k+1}\),則可使用倒序相加法.
 

【典題3】設函數\(f(x)=\dfrac{2^{x}}{2^{x}+\sqrt{2}}\)的圖象上兩點\(P_1 (x_1 ,y_1)\)\(P_2 (x_2 ,y_2)\),若\(\overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}\right)\),且點\(P\)的橫坐標為\(\dfrac{1}{2}\)
(1)求證:\(P\)點的縱坐標為定值,並求出這個定值;
(2)求\(S_{n}=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\).
【解析】(1)證:\(∵\overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}\right)\)
\(∴P\)\(P_1 P_2\)的中點\(⇒x_1+x_2=1\)
\(\therefore y_{1}+y_{2}=f\left(x_{1}\right)+f\left(x_{2}\right)\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2^{x_{2}}}{2^{x_{2}}+\sqrt{2}}\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2^{1-x_{1}}}{2^{1-x_{1}}+\sqrt{2}}\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2}{\sqrt{2} \cdot 2^{x_{1}+2}}=1\)
\(\therefore y_{p}=\dfrac{1}{2}\left(y_{1}+y_{2}\right)=\dfrac{1}{2}\)
(2)解:由(1)知\(x_1+x_2=1\)\(f (x_1)+f (x_2)=y_1+y_2=1\)\(f(1)=2-\sqrt{2}\)
\({\color{Red}{(即橫坐標之和為1,則對應的坐標之和為1,則有f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n-1}{n}\right)=f\left(\dfrac{k}{n}\right)+f\left(\dfrac{n-k}{n}\right)=1,想到倒序相加法)}}\)
\(S_{n}=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\)
\(S_{n}=f\left(\dfrac{n}{n}\right)+f\left(\dfrac{n-1}{n}\right)+\cdots+f\left(\dfrac{2}{n}\right)+f\left(\dfrac{1}{n}\right)\)
兩式相加得
\(\begin{aligned} 2 S_{n}=& f(1)+\left[f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n-1}{n}\right)\right]+\left[f\left(\dfrac{2}{n}\right)+f\left(\dfrac{n-2}{n}\right)\right]+\cdots +\left[f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{1}{n}\right)\right]+f(1) \\ =& 2 f(1)+n-1 \\ =& n+3-2 \sqrt{2} \end{aligned}\)
\(\therefore S_{n}=\dfrac{n+3-2 \sqrt{2}}{2}\)
 

鞏固練習

1(★★)設等差數列\(\left\{a_{n}\right\}\),公差為\(d\),求證:\(\left\{a_{n}\right\}\)的前\(n\)項和\(S_{n}=\dfrac{\left(a_{1}+a_{n}\right) n}{2}\).
 
 

2(★★)\(f(x)=(x-1)^3+1\),求\(f(-4)+⋯\)\(+f(0)+⋯+f(5)+f(6)\)的值為\(\underline{\quad \quad}\)
 
 

3(★★)設函數\(f(x)=\dfrac{x^{2}}{1+x^{2}}\),求\(f(1)+f(2)\)\(+f\left(\dfrac{1}{2}\right)+f(3)+f\left(\dfrac{1}{3}\right)+f(4)+f\left(\dfrac{1}{4}\right)\)的值\(\underline{\quad \quad}\)
 
 

參考答案

1.提示:倒序相加法
2.\(11\)
3.\(\dfrac{7}{2}\)
 

【方法三】 分組求和法

1 若數列\(\{c_n\}\)中通項公式\(c_n=a_n+b_n\),可分成兩個數列\(\left\{a_{n}\right\}\)\(\{b_n\}\)之和,則數列\(\{c_n\}\)的前\(n\)項和等於兩個數列\(\left\{a_{n}\right\}\)\(\{b_n\}\)的前\(n\)項和的和.
2 常見的是\(c_n=\)等差+等比形式,分組求和法的解題套路如下
image.png
3 等比數列的通項公式形如\(a_n=kn+b\),等差數列的通項公式形如\(a_n=A\cdot B^n\).
 

【典題1】求數列\(\left\{3^{n}+2 n-1\right\}\)的前\(n\)項和為\(S_n\).
【解析】\(a_n=3^n+2n-1\)
\({\color{Red}{(數列\left\{3^{n}\right\}是等比數列, \{2 n-1\}是等差數列)}}\)
\(S_n=a_1+a_2+a_3+⋯+a_n\)
\(=(3^1+1)+(3^2+3)+(3^3+5)+⋯(3^n+2n-1)\)
\({\color{Red}{(把等比項和等差項分別放在一組) }}\)
\(=(3^1+3^2+3^3+⋯+3^n )+(1+3+5+⋯+2n-1)\)
\({\color{Red}{(確定好首項和公差、公比) }}\)
\(=\dfrac{3\left(1-3^{n}\right)}{1-3}+\dfrac{(1+2 n-1) n}{2}\)
\(=\dfrac{3^{n+1}}{2}+n^{2}-\dfrac{3}{2}\).

 

【典題2】已知等差數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),且\(a_5=5a_1\)\(S_3-a_2=8\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)若數列\(\{b_n\}\)滿足\((n×2^n+S_n)b_n=a_n\),求數列\(\left\{\dfrac{1}{b_{n}}\right\}\)的前\(n\)項和\(T_n\)
【解析】(1)等差數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\)
設公差為\(d\),且\(a_5=5a_1\),\(S_3-a_2=8\)
\(\therefore\left\{\begin{array}{l} a_{1}+4 d=5 a_{1} \\ 2 a_{1}+2 d=8 \end{array}\right.\),解得\(\left\{\begin{array}{c} a_{1}=2 \\ d=2 \end{array}\right.\)
\(a_n=2n\)
(2)由於\(a_n=2n\)
\(\therefore S_{n}=\dfrac{(2+2 n) n}{2}=n^{2}+n\)
\(∵\)數列\(\{b_n\}\)滿足\(\left(n 2^{n}+S_{n}\right) b_{n}=a_{n}\)
\(\therefore \dfrac{1}{b_{n}}=\dfrac{2^{n}+n+1}{2}\)
\(T_{n}=\dfrac{1}{b_{1}}+\dfrac{1}{b_{2}}+\cdots+\dfrac{1}{b_{n}}\)\(=\dfrac{1}{2}\left[\left(2^{1}+2^{2}+\ldots+2^{n}\right)+\left(\dfrac{n(n+1)}{2}+n\right)\right]\)\(=2^{n}+\dfrac{n^{2}}{4}+\dfrac{3 n}{4}-1\)
 

【典題3】設數列\(\left\{a_{n}\right\}\)滿足\(a_1=1\)\(\dfrac{a_{n+1}}{a_{n}}=2^{n}\)\((n∈N^*)\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)設\(b_{n}=\log _{2} a_{n}\),求數列\(b_2+b_3+⋯+b_{100}\)的值.
【解析】(1)數列\(\left\{a_{n}\right\}\)滿足\(a_1=1\)\(\dfrac{a_{n+1}}{a_{n}}=2^{n}\)\((n∈N^*)\)
\(\therefore a_{n}=\left(\dfrac{a_{n}}{a_{n-1}} \cdot \dfrac{a_{n-1}}{a_{n-2}} \cdots \dfrac{a_{2}}{a_{1}}\right) \cdot a_{1}(n \geq 2)\)
\(\therefore a_{n}=\left(2^{n-1} \cdot 2^{n-2} \cdots 2\right) \times 1=2^{\dfrac{n(n-1)}{2}}(n \geq 2)\)
\(n=1\)時,\(a_1=1\)也符合上式,
\(∴\)數列\(\left\{a_{n}\right\}\)的通項公式為\(a_{n}=2^{\dfrac{n(n-1)}{2}}\)
(2)\(\because b_{n}=\log _{2} a_{n}=\dfrac{n(n-1)}{2}=\dfrac{n^{2}-n}{2}=\dfrac{1}{2}\left(n^{2}-n\right)\)
\(\therefore b_{2}+b_{3}+\cdots+b_{100}=\dfrac{1}{2}\left[\left(2^{2}+3^{2}+\cdots+100^{2}\right)-(2+3+\cdots+100)\right]\)
\({\color{Red}{(數列\{b_n\}分成數列\left\{n^{2}\right\}和\left\{n\right\},再用公式法求解)}}\)
\(=\dfrac{1}{2}\left[\left(1^{2}+2^{2}+3^{2}+\cdots+100^{2}\right)-(1+2+3+\cdots+100)\right]\)
\(=\dfrac{1}{2}\left[\dfrac{100 \times(100+1) \times(2 \times 100+1)}{6}-\dfrac{100 \times(100+1)}{2}\right]\)\(=166650\)
 

鞏固練習

1(★★)已知數列\(\left\{a_{n}\right\}\)的通項\(a_n=2^n+n\),若數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),則\(S_8=\)\(\underline{\quad \quad}\)
 

2(★★)數列\(1 \dfrac{1}{2}\)\(2 \dfrac{1}{4}\)\(3 \dfrac{1}{8}\),…,\(n+\dfrac{1}{2^{n}}\)的前\(n\)項和為\(S_n=\)\(\underline{\quad \quad}\)  .
 

3(★★★)已知數列\(\left\{a_{n}\right\}\)是等比數列,公比為\(q\),數列\(\{b_n\}\)是等差數列,公差為\(d\),且滿足:\(a_1=b_1=1\)\(b_2+b_3=4a_2\)\(a_3-3b_2=-5\)
(1)求數列\(\left\{a_{n}\right\}\)\(\{b_n\}\)的通項公式;
(2)設\(c_n=a_n+b_n\),求數列\(\{c_n\}\)的前\(n\)項和\(S_n\)
 
 

4(★★★)已知公差不為\(0\)的等差數列\(\left\{a_{n}\right\}\)的前9項和\(S_9=45\),且第\(2\)項、第\(4\)項、第\(8\)項成等比數列.
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)若數列\(\{b_n\}\)滿足\(b_{n}=a_{n}+\left(\dfrac{1}{2}\right)^{n-1}\),求數列\(\{b_n\}\)的前\(n\)項和\(T_n\)
 
 
 

參考答案

1.\(546\)
2.\(S_{n}=\dfrac{n(n+1)}{2}-\dfrac{1}{2^{n}}+1\)
3.\((1) a_n=2^{n-1}, b_n=2n-1\)\((2) 2^n+n^2-1\)
4.\((1) a_n=n\)\((2) T_{n}=\dfrac{n^{2}+n+4}{2}-\dfrac{1}{2^{n-1}}\)
 

【方法四】 錯位相減法

當數列\(\left\{a_{n}\right\}\)的通項公式\(a_n=b_n⋅ c_n\),其中\(\{b_n\}\)為等差數列,\(\{c_n\}\)為等比數列.
其解題套路如下
image.png
 

【典題1】已知遞增的等比數列\(\left\{a_{n}\right\}\)滿足\(a_2+a_3+a_4=28\),且\(a_3+2\)\(a_2\),\(a_4\)的等差中項.
(1)求數列\(\left\{a_{n}\right\}\)的通項公式\(a_n\)
(2)令\(b_{n}=a_{n} \cdot \log _{\frac{1}{2}} a_{n}\)\(S_{n}=b_{1}+b_{2}+\cdots+b_{n}\),求\(S_n\)
【解析】(1)設數列\(\left\{a_{n}\right\}\)的公比為\(q\)
由題意可知\(\left\{\begin{array}{l} a_{2}+a_{3}+a_{4}=28 \\ 2\left(a_{3}+2\right)=a_{2}+a_{4} \end{array}\right.\)
\(\left\{\begin{array} { l } { a _ { 3 } = 8 } \\ { a _ { 2 } + a _ { 4 } = 2 0 } \end{array} \Rightarrow \left\{\begin{array}{l} a_{1} q^{2}=8 \\ a_{1} q+a_{1} q^{3}=20 \end{array}\right.\right.\)
解得\(\left\{\begin{array}{l} a_{1}=2 \\ q=2 \end{array}\right.\)\(\left\{\begin{array}{l} a_{1}=32 \\ q=\dfrac{1}{2} \end{array}\right.\)(舍)
\(\therefore a_{n}=2 \cdot 2^{n-1}=2^{n}\).
(2)\(b_{n}=a_{n} \cdot \log _{\frac{1}{2}} a_{n}=2^{n} \cdot \log _{\frac{1}{2}} 2^{n}=-n \cdot 2^{n}\)
\({\color{Red}{(其中\{n\}是等差數列, \{2^n\}是等比數列,可用錯位相減法)}}\)
\(\therefore S_{n}=-1 \times 2-2 \times 2^{2}-3 \times 2^{3}-\cdots-(n-1) \times 2^{n-1}-n \times 2^{n}\)...... (1)
\(2 S_{n}=\quad \quad-1 \times 2^{2}-2 \times 2^{3}-3 \times 2^{4}-\cdots-(n-1) \times 2^{n}-n \times 2^{n+1}\)...... (2)
\(∴(1)-(2)\)
\(-S_{n}=-\left(2+2^{2}+2^{3}+\cdots 2^{n}\right)+n \times 2^{n+1}\)\(=-\dfrac{2-2^{n+1}}{1-2}+n \times 2^{n+1}\)\(=(n-1) \times 2^{n+1}+2\)
\(\therefore S_{n}=(1-n) \times 2^{n+1}-2\)
\({\color{Red}{ (最后可用S_2檢驗運算結果是否正確)}}\)
 

【典題2】已知正項數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),滿足\(a_n^2+a_n-2S_n=0\)\((n∈N^*)\)
(1)求數列\(\left\{a_{n}\right\}\)通項公式;
(2)記數列\(\{b_n\}\)的前\(n\)項和為\(S_n\),若\(b_n=(2a_n-7) 2^n\),求\(T_n\)
(3)求數列\(\{T_n\}\)的最小項.
【解析】(1)由\(a_n^2+a_n-2S_n=0\)
得到\(a_{n+1}^{2}+a_{n+1}-2 S_{n+1}=0\)
兩式相減得\(\left(a_{n+1}^{2}-a_{n}^{2}\right)+\left(a_{n+1}-a_{n}\right)-2\left(S_{n+1}-S_{n}\right)=0\)
整理得\(\left(a_{n+1}+a_{n}\right)\left(a_{n+1}-a_{n}-1\right)=0\)
由於數列\(\left\{a_{n}\right\}\)是正項數列,
所以\(a_{n+1}-a_{n}=1\)
\(n=1\)時,解得\(a_1=1\)
\(a_n=1+n-1=n\)
(2)由(1)得:\(b_n=(2n-7)⋅2^n\)
\({\color{Red}{(其中\{2n-7\}是等差數列, \{2^n\}是等比數列,可用錯位相減法)}}\)
\(\therefore T_{n}=(-5) \cdot 2^{1}+(-3) \cdot 2^{2}+(-1) \cdot 2^{3}+\cdots+(2 n-9) \cdot 2^{n-1}+(2 n-7) \cdot 2^{n}\)
...... (1) ,
\(2 T_{n}=\quad(-5) \cdot 2^{2}+(-3) \cdot 2^{3}+(-1) \cdot 2^{3}+\cdots+(2 n-9) \cdot 2^{n}+(2 n-7) \cdot 2^{n+1}\)
...... (2)
(1)-(2) 得\(-T_{n}=(-5) \times 2+2^{3}+2^{4}+\cdots+2^{n+1}-(2 n-7) \cdot 2^{n+1}\)
化簡得\(T_{n}=(2 n-9) \cdot 2^{n+1}+18\)
(3)\(T_{n+1}-T_{n}\)\(=(2 n-7) \cdot 2^{n+2}+18-(2 n-9) \cdot 2^{n+1}-18\)\(=(2 n-5) \cdot 2^{n+1}\)
\({\color{Red}{(做差法判斷數列\{T_n\}的單調性,從而求出最小項)}}\)
\(n≤2\)時,\(T_{n+1}<T_{n}\),當\(n≥3\)時,\(T_{n+1}>T_{n}\)
\(T_1>T_2>T_3<T_4<T_5<⋯\)
故數列\(\{T_n\}\)的最小值為\(T_3=-30\)
 

鞏固練習

1(★★★)設等差數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),且\(S_4=4S_2\)\(a_{2n}=2a_n+1\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)設數列\(\{b_n\}\)滿足\(b_{n}=\dfrac{2\left(a_{n}-1\right)}{4^{n}}\),求數列\(\{b_n\}\)的前\(n\)項和\(R_n\)
 
 

2(★★★)正項數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),且\(8S_n=(a_n+2)^2\)\((n∈N^*)\)
(1)求\(a_1\)\(a_2\)的值及數列\(\left\{a_{n}\right\}\)的通項公式;
(2)記\(c_{n}=\dfrac{a_{n}}{3^{n}}\),數列\(\{c_n\}\)\(n\)的和為\(T_n\),求證:\(T_n<2\)
 
 

3(★★★)已知等比數列\(\left\{a_{n}\right\}\)滿足\(a_1=2\)\(a_2=4(a_3-a_4)\),正項數列\(\{b_n\}\)\(n\)項和為\(S_n\),且\(2 \sqrt{S_{n}}=b_{n}+1\)
(1)求數列\(\left\{a_{n}\right\}\)\(\{b_n\}\)的通項公式;
(2)令\(c_{n}=\dfrac{b_{n}}{a_{n}}\),求數列\(\{c_n\}\)的前\(n\)項和\(T_n\)
(3)若\(λ>0\),求對所有的正整數\(n\)都有\(2λ^2-kλ+2>a_{2n}b_n\)成立的\(k\)的取值范圍.
 
 

4(★★★)已知數列\(\left\{a_{n}\right\}\)滿足:\((n+1) a_{n+1}-(n+2) a_{n}=(n+1)(n+2)\)\((n∈N^*)\)\(a_1=4\),數列\(\{b_n\}\)的前\(n\)項和為\(S_n\)滿足:\(S_n=2b_n-1\)\((n∈N^*)\)
(1)證明數列\(\left\{\dfrac{a_{n}}{n+1}\right\}\)為等差數列,並求數列\(\left\{a_{n}\right\}\)\(\{b_n\}\)的通項公式;
(2)若\(c_{n}=\left(\sqrt{a_{n}}-1\right) b_{n+1}\),數列\(\{c_n\}\)的前\(n\)項和為\(T_n\),對任意的\(n∈N^*\)\(T_{n} \leq n S_{n+1}-m-2\)恆成立,求實數\(m\)的取值范圍.
 
 

參考答案

  1. \((1) a_n=2n-1\)\((2) R_{n}=\dfrac{1}{9}\left(4-\dfrac{3 n+1}{4^{n-1}}\right)\)

  2. \((1) a_n=4n-2\)\((2) T_{n}=2-\dfrac{2 n+2}{3^{n}}<2\)

  3. \((1)a_{n}=\dfrac{1}{2^{n-2}},b_{n}=2 n-1\)
    \((2)T_{n}=\dfrac{3}{2}+(2 n-3) \cdot 2^{n-1}\)
    \((3)(-\infty, 2 \sqrt{2})\)

  4. \((1) a_{n}=(n+1)^{2}, b_{n}=2^{n-1}\)
    \((2) m≤-1\)
     

【方法五】 裂項相消法

常見裂項公式
\((1)\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)\(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\)
\((2)\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)\(\dfrac{1}{\sqrt{n+k}+\sqrt{n}}=\dfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\)
 

【典題1】設等差數列\(\left\{a_{n}\right\}\)滿足\(a_2=5\)\(a_6+a_8=30\),則數列\(\left\{\dfrac{1}{a_{n}^{2}-1}\right\}\)的前\(n\)項的和等於\(\underline{\quad \quad}\)
【解析】\(∵a_6+a_8=30\)\(∴a_7=15\)
\(∵a_2=5\)\(\therefore d=\dfrac{15-5}{7-2}=2\)
\(∴a_n=a_2+(n-2)d=2n+1\)
\(∴a_n^2=(2n+1)^2=4n^2+4n+1\)
\(\therefore \dfrac{1}{a_{n}^{2}-1}=\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\({\color{Red}{ (因式分解裂項是關鍵) }}\)
\(∴\)數列\(\left\{\dfrac{1}{a_{n}^{2}-1}\right\}\)的前\(n\)項的和為:
\(\dfrac{1}{4}\left[\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right]\)\(=\dfrac{1}{4}\left[1-\dfrac{1}{n+1}\right]=\dfrac{n}{4(n+1)}\).
【點撥】
本題是用了常見的裂項公式\(\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)\(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\)
思考下以下各項怎么裂項:\(a_{n}=\dfrac{1}{n^{2}-n}(n \geq 2)\)\(a_{n}=\dfrac{1}{2 n^{2}+4 n}\)\(a_{n}=\dfrac{1}{n^{2}+3 n}\).
 

【典題2】數列\(\left\{a_{n}\right\}\)的通項公式\(a_{n}=\dfrac{1}{\sqrt{n+2}+\sqrt{n+3}}\),則該數列的前\(n\)項和為\(S_n\)等於\(\underline{\quad \quad}\).
【解析】\(a_{n}=\dfrac{1}{\sqrt{n+2}+\sqrt{n+3}}\)\(=\dfrac{\sqrt{n+3}-\sqrt{n+2}}{(\sqrt{n+2}+\sqrt{n+3})(\sqrt{n+3}-\sqrt{n+2})}\)\(=\dfrac{\sqrt{n+3}-\sqrt{n+2}}{(n+3)-(n+2)}=\sqrt{n+3}-\sqrt{n+2}\)
\(\begin{aligned} \therefore S_{n}=& a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n} \\ =&(\sqrt{4}-\sqrt{3})+(\sqrt{5}-\sqrt{4})+(\sqrt{6}-\sqrt{5})+\cdots \\ &+(\sqrt{n+2}-\sqrt{n+1})+(\sqrt{n+3}-\sqrt{n+2}) \\ =& \sqrt{n+3}-\sqrt{3} . \end{aligned}\)
【點撥】
① 本題是用了常見的裂項公式\(\dfrac{1}{\sqrt{n+k}+\sqrt{n}}=\dfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\),有些類似分母有理化,\(\sqrt{n+k}+\sqrt{n+b}\)\(\sqrt{n+k}-\sqrt{n+b}\)互為“共軛根式”.
② 思考下以下各項怎么裂項:\(a_{n}=\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)\(a_{n}=\dfrac{1}{\sqrt{n+3}-\sqrt{n}}\)\(a_{n}=\dfrac{1}{\sqrt{n+1}-\sqrt{n-1}}\).
 

【典題3】等比數列\(\left\{a_{n}\right\}\)中,\(a_1=2\)\(q=2\),數列\(b_{n}=\dfrac{a_{n+1}}{\left(a_{n+1}-1\right)\left(a_{n}-1\right)}\)\(\{b_n\}\)的前\(n\)項和為\(T_n\),則\(T_{10}\)的值為\(\underline{\quad \quad}\)
【解析】由題意,可知\(a_{n}=2 \times 2^{n-1}=2^{n}\),\(n∈N^*\)
\(b_{n}=\dfrac{a_{n+1}}{\left(a_{n+1}-1\right)\left(a_{n}-1\right)}=\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)\(=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)
\(\begin{aligned} \therefore T_{10}=& b_{1}+b_{2}+\cdots+b_{10} \\ =& 2\left(\dfrac{1}{2^{1}-1}-\dfrac{1}{2^{2}-1}+\dfrac{1}{2^{2}-1}-\dfrac{1}{2^{3}-1}+\cdots+\dfrac{1}{2^{10}-1}-\dfrac{1}{2^{11}-1}\right) \\ =& 2\left(\dfrac{1}{2^{1}-1}-\dfrac{1}{2^{11}-1}\right) \\ =& \dfrac{4092}{2047} . \end{aligned}\)
【點撥】
① 本題的裂項\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)需要一些技巧,可這么猜想\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)中分母有\(2^{n+1}-1\)\(2^n-1\),往裂項的角度思考,那它是否等於\(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\)(當然是分母小的減去分母大)呢?我們就看下\(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\)通分后的結果\(\dfrac{2^{n}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)與“目標\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)”不相等,但是\(2\)倍的關系,故可得\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)
② 在裂項的技巧中,大膽猜想再小心驗證便可.
思考下以下各項怎么裂項:\(a_{n}=\dfrac{2^{n-1}}{\left(2^{n-1}+1\right)\left(2^{n}+1\right)}\)\(a_{n}=\dfrac{2 \cdot 3^{n-1}}{\left(2 \cdot 3^{n-1}+2\right)\left(2 \cdot 3^{n}+2\right)}\).
 

【典題4】已知數列\(\left\{a_{n}\right\}\)滿足\(a_n≠0\)\(a_{1}=\dfrac{1}{3}\)\(a_{n-1}-a_{n}=2 a_{n} a_{n-1}\)\((n≥2 ,n∈N^*)\)
(1)求證:\(\left\{\dfrac{1}{a_{n}}\right\}\)是等差數列;
(2)證明:\(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}<\dfrac{1}{4}\)
【解析】證明:(1)\(\because a_{n-1}-a_{n}=2 a_{n} a_{n-1}\)\((n≥2 ,n∈N^*)\)
\(\therefore \dfrac{1}{a_{n}}-\dfrac{1}{a_{n-1}}=2(n \geq 2)\)
\(\therefore\left\{\dfrac{1}{a_{n}}\right\}\)是以3為首項,\(2\)為公差的等差數列.
(2)由(1)知:\(\dfrac{1}{a_{n}}=3+(n-1) \cdot 2=2 n+1\)
\(\therefore a_{n}=\dfrac{1}{2 n+1}\)
\(\therefore a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}\)\(<\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4 n(n+1)}\)\(=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\) \({\color{Red}{(放縮法) }}\)
\(\begin{aligned} &\therefore a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \\ &<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) \\ &<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{n}-\dfrac{1}{n+1}\right) \\ &=\dfrac{1}{4}\left(1-\dfrac{1}{n+1}\right)<\dfrac{1}{4} \end{aligned}\)
【點撥】
① 在數列中求證不等式,利用放縮法是常用的方法,但技巧性較高.
② 要證明\(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}<\dfrac{1}{4}\),用到放縮法的話,可考慮把\(a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}\)“放大些”,則要把分母\((2 n+1)^{2}=4 n^{2}+4 n+1\)“縮小些”,縮小多少呢?那“消掉”常數項1,對\(4n^2+4n+1\)來說“影響較小”,並且\(a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}<\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4 n(n+1)}\)\(=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)放縮后還能裂項求和.
 

鞏固練習

1(★★)數列\(\left\{a_{n}\right\}\)滿足\(a_{n}=\dfrac{1}{(2 n+1)(2 n+3)}\),\(n∈N^*\),其前\(n\)項和為\(S_n\).若\(S_n<M\)恆成立,則\(M\)的最小值為\(\underline{\quad \quad}\)
 
 

2(★★★)已知正項數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),對\(∀n∈N^*\)\(2S_n=a_n^2+a_n\).令\(b_{n}=\dfrac{1}{a_{n} \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_{n}}}\),設\(\left\{b_{n}\right\}\)的前\(n\)項和為\(T_n\),則在\(T_1\),\(T_2\),\(T_3\),… ,\(T_{100}\)中有理數的個數為\(\underline{\quad \quad }\)
 
 

3(★★★)已知數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),且滿足\(a_1=2\)\(S_{n}=a_{n+1}-2^{n+2}+2\),\(n∈N^*\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)設\(b_{n}=\dfrac{2^{n}}{a_{n}}\),記數列\(\left\{b_{n} b_{n+1}\right\}\)的前\(n\)項和為\(T_n\),證明:\(\dfrac{1}{2} \leq T_{n}<1\)
 
 

4(★★★)已知數列\(\left\{a_{n}\right\}\)滿足\(a_1=1\)\(a_{n+1}=\dfrac{a_{n}}{a_{n}+1}\)
(1)證明:數列\(\left\{\dfrac{1}{a_{n}}\right\}\)是等差數列,並求數列\(\{a_n\}\)的通項公式;
(2)設\(b_{n}=\dfrac{a_{n}}{n+2}\),求數列\(\{b_n\}\)\(n\)項和\(S_n\)
 
 

5(★★★)設數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),已知\(a_n>0\)\(a_n^2+2a_n=4S_n+3\)
(1)求\(\{a_n\}\)的通項公式;
(2)若數列\(\{b_n\}\)滿足\(b_{n}=\dfrac{2 n+1}{n^{2}\left(a_{n+1}-1\right)^{2}}\),求\(\{b_n\}\)的前\(n\)項和\(T_n\)
 
 

6(★★★★)\(S_n\)為數列\(\left\{a_{n}\right\}\)的前\(n\)項和,且\(S_{n+1}=3 S_{n}+4 n\)\((n∈N^*)\)\(a_1=0\)
(1)求證:數列\(\left\{a_{n}+2\right\}\)是等比數列;
(2)若對任意\(T_n\)為數列\(\left\{\dfrac{a_{n}+2}{\left(a_{n}+4\right)\left(a_{n+1}+4\right)}\right\}\)的前\(n\)項和,求證:\(T_{n}<\dfrac{1}{2}\)
 
 

7(★★★★)已知數列\(\left\{a_{n}\right\}\)的前\(n\)項和為\(S_n\),已知\(a_1=2\)\(6 S_{n}=3 n a_{n+1}-2n(n+1)(n+2)\)\(n∈N^*\)
(1)求數列\(\left\{a_{n}\right\}\)的通項公式;
(2)證明:\(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}<\dfrac{5}{6}\)
 
 
 

參考答案

  1. \(\dfrac{1}{6}\)

  2. \(9\)

  3. \((1)a_n=n\cdot 2^n\)
    \((2)\)提示\(T_{n}=1-\dfrac{1}{n+1}\)

  4. \((1)a_{n}=\dfrac{1}{n}\)
    \((2)S_{n}=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\)

  5. \((1)a_n=2n+1\)
    \((2)T_{n}=\dfrac{n^{2}+2 n}{4(n+1)^{2}}\)

  6. \((1)\)提示:定義法證明
    \((2)\)提示:裂項相消法求\(T_{n}=\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{3^{n}+1}\right)\)

  7. \((1)a_n=2n^2\)
    \((2)\)提示:放縮法、裂項相消法


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM