中值隨思


\(\qquad\) (為了更好的體驗,請於電腦端閱讀此文。)

\(\qquad\) 近些年來,各種中值問題層出不窮,很多朋友因此苦惱不已。

\(\qquad\) 其實,中值問題的一般性的解決方法大抵有\(4\)種:

1.考察函數性質(例如零點定理、介值定理、討論最值點)
2.利用中值定理(\(\text{Fermat}\)引理、\(\text{Rolle}\)定理、\(\text{Lagrange}\)中值定理、\(\text{Cauchy}\)中值定理、\(\text{Taylor}\)公式、積分中值定理)
3.探索多中值問題(例如中值間有某種確定的函數關系\(\eta=g(\xi)\),由此推出\(\xi,\eta\)同時存在,且等式成立)
4.創造“\(神乎其技\)”(莫名其妙\(\checkmark\))的方法。

\(\qquad\) 考慮到積分中值定理很難記憶,現將幾個版本的積分中值定理陳述如下:

定理1. 積分第一中值定理:若\(f\in C[a,b],\)\(\exists \xi \in (a,b),\) 使得

\[\int_a^b f(x)\text{d}x=f(\xi)(b-a). \]

定理2. 推廣的積分第一中值定理:若\(f\in C[a,b],\)\(g\)\([a,b]\)內可積、不變號,則

\[\exists \xi\in (a,b),\ \text{s.t.}\ \int_a^b f(x)g(x)\text{d}x=f(\xi)\int_a^b g(x)\text{d}x. \]

定理3. 積分第二中值定理:設\(f(x)\)\([a,b]\)上可積.

\((1)\)\(g\)\([a,b]\)上遞減,\(g(x)\geqslant 0,\)\(\exists \xi\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(a)\int_a^{\xi} g(x)\text{d}x. \]

\((2)\)\(g\)\([a,b]\)上遞增,\(g(x)\geqslant 0,\)\(\exists \eta\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(b)\int_{\eta}^b g(x)\text{d}x. \]

定理4. 積分第二中值定理的推論:若\(f\)\([a,b]\)上可積,\(g\)單調,則\(\exists \xi\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(a)\int_a^{\xi} g(x)\text{d}x+g(b)\int_{\xi}^b g(x)\text{d}x. \]

\(\color{red}{注:在定理3和定理4中,決不能將“\xi \in [a,b]”改為“\xi \in (a,b)”。}\)

\(\qquad\) 本文旨在收集典型的中值問題,做一個小題庫。問題將按着“題目\(\rightarrow\)分析\(\rightarrow\)解答”這一流程展示,爭取做到 每一段都不會突兀,每一步都不會是神來之筆。

\(\qquad\) 讀者可按照上述4種思路對下文中的題目加以分析,力求總結出個人的解題方案。囿於時間和水平,文中的探討難免不夠詳盡,甚至會有疏漏。讀者如有好方法或本文內容有誤,可在下方評論交流。

題1.\(f(x)\in C[0,1]\),且\(\int_0^1 f(x)\text{d}x=0\).求證:\(\exists \xi \in (0,1)\),使

\[\begin{equation} \xi^2 f(\xi)=\int_0^{\xi}\left(x^2+x\right)f(x)\text{d}x. \end{equation}\]

分析1:\(y=\int_0^x\left(t^2+t\right)f(t)\text{d}t\),則\((1)\)式化為\(y=\frac{x}{x+1}y'\).解此方程,得\(y=cxe^x\).

證1. \(\color{blue}{(By\text{ 獨步})}\) 根據下面的極限

\[\begin{equation} \lim_{x\to 0^+}\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{x^2}=\frac{1}{2}f(0), \end{equation}\]

故可設函數\(F(x)\)如下:\(F(0)=0\),且

\[F(x)=\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{xe^x},\ x\in (0,1]. \]

\(\color{red}{(\text{反證})}\)假設\((1)\)式不成立,則由

\[F'(x)=\frac{x^2 f(x)-\int_0^x\left(t^2+t\right)f(t)\text{d}t}{\frac{x^2}{x+1}e^x}, \]

不妨設\(F'(x)>0(0<x<1)\),於是\(\int_0^x\left(t^2+t\right)f(t)\text{d}t>0,\forall x\in (0,1)\).

定理3知,可選取\(\theta_i(i\in \mathbb{N}):0\leqslant \theta_n\leqslant \theta_{n-1}\leqslant \cdots \leqslant \theta_0:=1\),使得

\[\int_0^{\theta_0}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_0^2+\theta_0\right)\int_{\theta_1}^{\theta_0} f(t)\text{d}t>0; \]

\[\int_0^{\theta_1}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_1^2+\theta_1\right)\int_{\theta_2}^{\theta_1} f(t)\text{d}t>0; \]

\[\cdots\cdots \]

\[\int_0^{\theta_{n-1}}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_{n-1}^2+\theta_{n-1}\right)\int_{\theta_n}^{\theta_{n-1}} f(t)\text{d}t>0. \]

因此,數列\(\{\theta_n\}\)收斂.為使上述過程總可以延續下去,我們要求\(\theta_n\to 0\).

不難發現

\[\int_0^1 f(t)\text{d}t=\sum_{n=1}^{\infty}\int_{\theta_n}^{\theta_{n-1}} f(t)\text{d}t\geqslant \int_{\theta_1}^{\theta_0} f(t)\text{d}t>0. \]

這與題設中\(\int_0^1 f(x)\text{d}x=0\)矛盾!\(\qquad \vartriangleleft\)

分析2: 如果構造出證1.中的函數,但苦於找不到零點而無法利用\(\text{Rolle}\)定理,則需要考慮研究\(f(x)\)本身的性質.

證2. \(\color{blue}{(By\text{ MathRoc})}\) 根據\((2)\)式,可以定義\([0,1]\)上的連續函數\(g(x)\)如下:

\[g(0)=-\frac{f(0)}{2};g(x)=\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{x^2}-f(x),\ \forall x\in (0,1]. \]

\(f\equiv 0\),結論成立. 以下設\(f\not\equiv 0\),由\(\int_0^1 f(t)\text{d}t=0\)知,不等式\(f>0,f<0\)均有解.

\(\alpha,\beta\)分別是\(f\)的最小、大值點,則\(f(\alpha)<0<f(\beta)\),且

\[\begin{align*} g(\alpha)& \geqslant \frac{\int_0^\alpha\left(t^2+t\right)f(\alpha)\text{d}t}{\alpha^2}-f(\alpha)=\frac{2\alpha-3}{6}f(\alpha)>0,\\ g(\beta)& \leqslant \frac{\int_0^\beta\left(t^2+t\right)f(\beta)\text{d}t}{\beta^2}-f(\beta)=\frac{2\beta-3}{6}f(\beta)<0. \end{align*}\]

根據零點定理,\(g(x)\)\(\alpha,\beta\)之間有零點\(\xi\).\(\qquad \vartriangleleft\)

分析3: 構造證1.中的函數,尋找\(F\)的零點.

證3. \(\color{blue}{(By\text{ 悠久之翼})}\)\(G(x)=\int_0^x\left(t^2+t\right)f(t)\text{d}t,\)

\[\begin{equation} 0=\int_0^1 f(x)\text{d}x=\int_0^1 \frac{\text{d}G(x)}{x^2+x}=\frac{1}{2}G(1)+\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x. \end{equation}\]

接下來有兩種方式證明\(\exists a\in (0,1],G(a)=0.\)

\(\color{purple}{法\ 1.}\)\(G(x)>0,\forall x\in (0,1],\)

\[\frac{1}{2}G(1)+\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x>0. \]

這與\((3)\)式矛盾!同理,不會有\(G(x)<0,\forall x\in (0,1].\)

\(\color{purple}{法\ 2.}\)定理2,可知\(\exists \eta \in (0,1),\) 使得

\[\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x=\frac{G(\eta)}{\eta^2}\int_0^1\frac{2x+1}{\left(x+1\right)^2}\text{d}x. \]

\((3)\)式推出\(G(\eta)G(1)\leqslant 0.\)

綜上分析,\(\exists a\in (0,1],G(a)=0.\) 對於\(F(x):=\frac{G(x)}{xe^x},\)\(F(0)=F(a)=0.\)

最后由\(\text{Rolle}\)定理結束證明.\(\qquad \vartriangleleft\)



題2.\(f\in D^2[0,1],f(0)=2,f'(0)=-2,f(1)=1.\) 求證:

\[\exists \xi\in (0,1),\ \text{s.t.}\ f(\xi)f'(\xi)+f''(\xi)=0. \]

分析:\(g(x)=\frac{1}{2}f^2(x)+f'(x)(0\leqslant x\leqslant 1),\)\(g(0)=0.\) 接下來需要尋找\(g\)的另一零點,最直觀的情形便是有\(f(\alpha)=f'(\alpha)=0(0<\alpha<1),\) 這一點只需要\(\alpha\)是極值點,換言之\(\alpha\)是唯一零點. 若\(f\)有多個零點,例如\(\beta,\gamma,\)\(g(\beta)=f'(\beta),g(\gamma)=f'(\gamma),\) 然后對\(f'\)利用零點定理. 若無零點,則須多加思考.

證. \(\color{blue}{(By\text{ MathRoc})}\) 接下來分\(3\)種情形進行討論.

\(\color{purple}{1.}\)\(f\)有唯一零點\(c\in (0,1),\)\(f(x)\geqslant 0,\forall x\in [0,1].\)\(c\)是極小值點.

\(\text{Fermat}\)引理知,\(f(c)=f'(c)=0.\) 故有\(g(c)=0.\)

\(\color{purple}{2.}\)\(f\)有多個零點,則集合\(E:=\{x\in [0,1]:f(x)=0\}\)非空且有界.

\(a=\inf(E),\) 則必有\(f(a)=0\geqslant f'(a).\)

事實上,若\(f(a)>0\)\(f'(a)>0,\)\(f\)\(a\)的某右鄰域\(U\)內恆正. 取\(x_0\in U\cap E,\)\(f(x_0)=0,\) 矛盾!若\(f(a)<0,\) 由零點定理知,\(\exists \alpha \in (0,a),f(\alpha)=0,\) 這與\(a\)的定義矛盾!

同理,設\(b=\sup(E),\) 則有\(f(b)=0\leqslant f'(b).\)

\(g(a)\leqslant 0\leqslant g(b),\) 從而\(\exists d\in [a,b],g(d)=0.\)

\(\color{purple}{3.}\)\(f\)無零點,由連續知,恆有\(f>0.\) 於是

\[g(x)=0\Leftrightarrow \frac{1}{2}+\frac{f'(x)}{f^2(x)}=0\Leftrightarrow \left(\frac{x}{2}-\frac{1}{f(x)}\right)^{\prime}=0. \]

\(\varphi(x)=\frac{x}{2}-\frac{1}{f(x)}(0\leqslant x\leqslant 1),\)\(\varphi(0)=\varphi(1)=-\frac{1}{2}.\)\(\text{Rolle}\)定理,知

\[\exists e\in (0,1),\ \text{s.t.}\ \varphi'(e)=\frac{g(e)}{\varphi^2(e)}=0. \]

綜上所述,\(g(0)=g(\varepsilon)=0(0<\varepsilon<1),\) \(\text{Rolle}\)定理可結束證明.\(\qquad \vartriangleleft\)



題3.\(f\in D^2[0,1]\),且\(f(0)=f(1)=0,|f''|\leqslant 1\).求證:

\[|f(x)|\leqslant \frac{1}{8},\ |f'(x)|\leqslant \frac{1}{2},\ \forall x\in [0,1]. \]

證. \(\color{blue}{(By\text{ Kawhi})}\) 定義\([0,1]\)上的函數如下:

\[g(x)=f(x)-\frac{f(c)}{(c-1)(c-0)}(x-1)(x-0). \]

其中\(c\)\((0,1)\)中的任意常數. 此時\(g(0)=g(c)=g(1)=0\). 兩次利用Rolle定理,有

\[g'(\xi_1)=g'(\xi_2)=0,\ 0<\xi_1<c<\xi_2<1; \]

\[g''(\xi)=f''(\xi)-\frac{2f(c)}{(c-1)(c-0)}=0,\ \xi_1<\xi<\xi_2. \]

再由\(|f''|\leqslant 1,f(0)=f(1)=0\),立即得到

\[|f(c)|=\frac{1}{2}\big|f''(\xi)(c-1)c\big|\leqslant \frac{1}{2}c(1-c),\ \forall c\in [0,1]. \]

\(x\in [0,1]\)利用Taylor公式,有

\[f(0)=f(x)+f'(x)(0-x)+\frac{1}{2}f''(\alpha)\big(0-x\big)^2, \]

\[f(1)=f(x)+f'(x)(1-x)+\frac{1}{2}f''(\beta)\big(1-x\big)^2. \]

兩式相減,可得

\[|f'(x)|\leqslant \frac{1}{2}|f''(\alpha)|x^2+\frac{1}{2}|f''(\beta)|\big(1-x\big)^2\leqslant \frac{x^2+\big(1-x\big)^2}{2}. \]

至此,命題得證.\(\qquad \vartriangleleft\)

\(\color{red}{注:}\) 為證\(|f|\leqslant \frac{1}{8}\)還可以設\(x_0\)\(|f|\)的最大值點,則

\[|f(x_0)|=\max_{0\leqslant x\leqslant 1}|f(x)|,\ f'(x_0)=0. \]

\(\text{Taylor}\)公式可得

\[f(0)=f(x_0)+f'(x_0)(0-x_0)+\frac{f''(\xi)}{2}\big(0-x_0\big)^2,\ x_0\in \Big[0,\frac{1}{2}\Big]. \]

\[f(1)=f(x_0)+f'(x_0)(1-x_0)+\frac{f''(\eta)}{2}\big(1-x_0\big)^2,\ x_0\in \Big[\frac{1}{2},1\Big]. \]

以上兩式均表明\(|f(x_0)|\leqslant \frac{1}{8}\).


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM