中值随思


\(\qquad\) (为了更好的体验,请于电脑端阅读此文。)

\(\qquad\) 近些年来,各种中值问题层出不穷,很多朋友因此苦恼不已。

\(\qquad\) 其实,中值问题的一般性的解决方法大抵有\(4\)种:

1.考察函数性质(例如零点定理、介值定理、讨论最值点)
2.利用中值定理(\(\text{Fermat}\)引理、\(\text{Rolle}\)定理、\(\text{Lagrange}\)中值定理、\(\text{Cauchy}\)中值定理、\(\text{Taylor}\)公式、积分中值定理)
3.探索多中值问题(例如中值间有某种确定的函数关系\(\eta=g(\xi)\),由此推出\(\xi,\eta\)同时存在,且等式成立)
4.创造“\(神乎其技\)”(莫名其妙\(\checkmark\))的方法。

\(\qquad\) 考虑到积分中值定理很难记忆,现将几个版本的积分中值定理陈述如下:

定理1. 积分第一中值定理:若\(f\in C[a,b],\)\(\exists \xi \in (a,b),\) 使得

\[\int_a^b f(x)\text{d}x=f(\xi)(b-a). \]

定理2. 推广的积分第一中值定理:若\(f\in C[a,b],\)\(g\)\([a,b]\)内可积、不变号,则

\[\exists \xi\in (a,b),\ \text{s.t.}\ \int_a^b f(x)g(x)\text{d}x=f(\xi)\int_a^b g(x)\text{d}x. \]

定理3. 积分第二中值定理:设\(f(x)\)\([a,b]\)上可积.

\((1)\)\(g\)\([a,b]\)上递减,\(g(x)\geqslant 0,\)\(\exists \xi\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(a)\int_a^{\xi} g(x)\text{d}x. \]

\((2)\)\(g\)\([a,b]\)上递增,\(g(x)\geqslant 0,\)\(\exists \eta\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(b)\int_{\eta}^b g(x)\text{d}x. \]

定理4. 积分第二中值定理的推论:若\(f\)\([a,b]\)上可积,\(g\)单调,则\(\exists \xi\in [a,b],\) 使得

\[\int_a^b f(x)g(x)\text{d}x=g(a)\int_a^{\xi} g(x)\text{d}x+g(b)\int_{\xi}^b g(x)\text{d}x. \]

\(\color{red}{注:在定理3和定理4中,决不能将“\xi \in [a,b]”改为“\xi \in (a,b)”。}\)

\(\qquad\) 本文旨在收集典型的中值问题,做一个小题库。问题将按着“题目\(\rightarrow\)分析\(\rightarrow\)解答”这一流程展示,争取做到 每一段都不会突兀,每一步都不会是神来之笔。

\(\qquad\) 读者可按照上述4种思路对下文中的题目加以分析,力求总结出个人的解题方案。囿于时间和水平,文中的探讨难免不够详尽,甚至会有疏漏。读者如有好方法或本文内容有误,可在下方评论交流。

题1.\(f(x)\in C[0,1]\),且\(\int_0^1 f(x)\text{d}x=0\).求证:\(\exists \xi \in (0,1)\),使

\[\begin{equation} \xi^2 f(\xi)=\int_0^{\xi}\left(x^2+x\right)f(x)\text{d}x. \end{equation}\]

分析1:\(y=\int_0^x\left(t^2+t\right)f(t)\text{d}t\),则\((1)\)式化为\(y=\frac{x}{x+1}y'\).解此方程,得\(y=cxe^x\).

证1. \(\color{blue}{(By\text{ 独步})}\) 根据下面的极限

\[\begin{equation} \lim_{x\to 0^+}\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{x^2}=\frac{1}{2}f(0), \end{equation}\]

故可设函数\(F(x)\)如下:\(F(0)=0\),且

\[F(x)=\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{xe^x},\ x\in (0,1]. \]

\(\color{red}{(\text{反证})}\)假设\((1)\)式不成立,则由

\[F'(x)=\frac{x^2 f(x)-\int_0^x\left(t^2+t\right)f(t)\text{d}t}{\frac{x^2}{x+1}e^x}, \]

不妨设\(F'(x)>0(0<x<1)\),于是\(\int_0^x\left(t^2+t\right)f(t)\text{d}t>0,\forall x\in (0,1)\).

定理3知,可选取\(\theta_i(i\in \mathbb{N}):0\leqslant \theta_n\leqslant \theta_{n-1}\leqslant \cdots \leqslant \theta_0:=1\),使得

\[\int_0^{\theta_0}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_0^2+\theta_0\right)\int_{\theta_1}^{\theta_0} f(t)\text{d}t>0; \]

\[\int_0^{\theta_1}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_1^2+\theta_1\right)\int_{\theta_2}^{\theta_1} f(t)\text{d}t>0; \]

\[\cdots\cdots \]

\[\int_0^{\theta_{n-1}}\left(t^2+t\right)f(t)\text{d}t=\left(\theta_{n-1}^2+\theta_{n-1}\right)\int_{\theta_n}^{\theta_{n-1}} f(t)\text{d}t>0. \]

因此,数列\(\{\theta_n\}\)收敛.为使上述过程总可以延续下去,我们要求\(\theta_n\to 0\).

不难发现

\[\int_0^1 f(t)\text{d}t=\sum_{n=1}^{\infty}\int_{\theta_n}^{\theta_{n-1}} f(t)\text{d}t\geqslant \int_{\theta_1}^{\theta_0} f(t)\text{d}t>0. \]

这与题设中\(\int_0^1 f(x)\text{d}x=0\)矛盾!\(\qquad \vartriangleleft\)

分析2: 如果构造出证1.中的函数,但苦于找不到零点而无法利用\(\text{Rolle}\)定理,则需要考虑研究\(f(x)\)本身的性质.

证2. \(\color{blue}{(By\text{ MathRoc})}\) 根据\((2)\)式,可以定义\([0,1]\)上的连续函数\(g(x)\)如下:

\[g(0)=-\frac{f(0)}{2};g(x)=\frac{\int_0^x\left(t^2+t\right)f(t)\text{d}t}{x^2}-f(x),\ \forall x\in (0,1]. \]

\(f\equiv 0\),结论成立. 以下设\(f\not\equiv 0\),由\(\int_0^1 f(t)\text{d}t=0\)知,不等式\(f>0,f<0\)均有解.

\(\alpha,\beta\)分别是\(f\)的最小、大值点,则\(f(\alpha)<0<f(\beta)\),且

\[\begin{align*} g(\alpha)& \geqslant \frac{\int_0^\alpha\left(t^2+t\right)f(\alpha)\text{d}t}{\alpha^2}-f(\alpha)=\frac{2\alpha-3}{6}f(\alpha)>0,\\ g(\beta)& \leqslant \frac{\int_0^\beta\left(t^2+t\right)f(\beta)\text{d}t}{\beta^2}-f(\beta)=\frac{2\beta-3}{6}f(\beta)<0. \end{align*}\]

根据零点定理,\(g(x)\)\(\alpha,\beta\)之间有零点\(\xi\).\(\qquad \vartriangleleft\)

分析3: 构造证1.中的函数,寻找\(F\)的零点.

证3. \(\color{blue}{(By\text{ 悠久之翼})}\)\(G(x)=\int_0^x\left(t^2+t\right)f(t)\text{d}t,\)

\[\begin{equation} 0=\int_0^1 f(x)\text{d}x=\int_0^1 \frac{\text{d}G(x)}{x^2+x}=\frac{1}{2}G(1)+\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x. \end{equation}\]

接下来有两种方式证明\(\exists a\in (0,1],G(a)=0.\)

\(\color{purple}{法\ 1.}\)\(G(x)>0,\forall x\in (0,1],\)

\[\frac{1}{2}G(1)+\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x>0. \]

这与\((3)\)式矛盾!同理,不会有\(G(x)<0,\forall x\in (0,1].\)

\(\color{purple}{法\ 2.}\)定理2,可知\(\exists \eta \in (0,1),\) 使得

\[\int_0^1\frac{2x+1}{\left(x^2+x\right)^2}G(x)\text{d}x=\frac{G(\eta)}{\eta^2}\int_0^1\frac{2x+1}{\left(x+1\right)^2}\text{d}x. \]

\((3)\)式推出\(G(\eta)G(1)\leqslant 0.\)

综上分析,\(\exists a\in (0,1],G(a)=0.\) 对于\(F(x):=\frac{G(x)}{xe^x},\)\(F(0)=F(a)=0.\)

最后由\(\text{Rolle}\)定理结束证明.\(\qquad \vartriangleleft\)



题2.\(f\in D^2[0,1],f(0)=2,f'(0)=-2,f(1)=1.\) 求证:

\[\exists \xi\in (0,1),\ \text{s.t.}\ f(\xi)f'(\xi)+f''(\xi)=0. \]

分析:\(g(x)=\frac{1}{2}f^2(x)+f'(x)(0\leqslant x\leqslant 1),\)\(g(0)=0.\) 接下来需要寻找\(g\)的另一零点,最直观的情形便是有\(f(\alpha)=f'(\alpha)=0(0<\alpha<1),\) 这一点只需要\(\alpha\)是极值点,换言之\(\alpha\)是唯一零点. 若\(f\)有多个零点,例如\(\beta,\gamma,\)\(g(\beta)=f'(\beta),g(\gamma)=f'(\gamma),\) 然后对\(f'\)利用零点定理. 若无零点,则须多加思考.

证. \(\color{blue}{(By\text{ MathRoc})}\) 接下来分\(3\)种情形进行讨论.

\(\color{purple}{1.}\)\(f\)有唯一零点\(c\in (0,1),\)\(f(x)\geqslant 0,\forall x\in [0,1].\)\(c\)是极小值点.

\(\text{Fermat}\)引理知,\(f(c)=f'(c)=0.\) 故有\(g(c)=0.\)

\(\color{purple}{2.}\)\(f\)有多个零点,则集合\(E:=\{x\in [0,1]:f(x)=0\}\)非空且有界.

\(a=\inf(E),\) 则必有\(f(a)=0\geqslant f'(a).\)

事实上,若\(f(a)>0\)\(f'(a)>0,\)\(f\)\(a\)的某右邻域\(U\)内恒正. 取\(x_0\in U\cap E,\)\(f(x_0)=0,\) 矛盾!若\(f(a)<0,\) 由零点定理知,\(\exists \alpha \in (0,a),f(\alpha)=0,\) 这与\(a\)的定义矛盾!

同理,设\(b=\sup(E),\) 则有\(f(b)=0\leqslant f'(b).\)

\(g(a)\leqslant 0\leqslant g(b),\) 从而\(\exists d\in [a,b],g(d)=0.\)

\(\color{purple}{3.}\)\(f\)无零点,由连续知,恒有\(f>0.\) 于是

\[g(x)=0\Leftrightarrow \frac{1}{2}+\frac{f'(x)}{f^2(x)}=0\Leftrightarrow \left(\frac{x}{2}-\frac{1}{f(x)}\right)^{\prime}=0. \]

\(\varphi(x)=\frac{x}{2}-\frac{1}{f(x)}(0\leqslant x\leqslant 1),\)\(\varphi(0)=\varphi(1)=-\frac{1}{2}.\)\(\text{Rolle}\)定理,知

\[\exists e\in (0,1),\ \text{s.t.}\ \varphi'(e)=\frac{g(e)}{\varphi^2(e)}=0. \]

综上所述,\(g(0)=g(\varepsilon)=0(0<\varepsilon<1),\) \(\text{Rolle}\)定理可结束证明.\(\qquad \vartriangleleft\)



题3.\(f\in D^2[0,1]\),且\(f(0)=f(1)=0,|f''|\leqslant 1\).求证:

\[|f(x)|\leqslant \frac{1}{8},\ |f'(x)|\leqslant \frac{1}{2},\ \forall x\in [0,1]. \]

证. \(\color{blue}{(By\text{ Kawhi})}\) 定义\([0,1]\)上的函数如下:

\[g(x)=f(x)-\frac{f(c)}{(c-1)(c-0)}(x-1)(x-0). \]

其中\(c\)\((0,1)\)中的任意常数. 此时\(g(0)=g(c)=g(1)=0\). 两次利用Rolle定理,有

\[g'(\xi_1)=g'(\xi_2)=0,\ 0<\xi_1<c<\xi_2<1; \]

\[g''(\xi)=f''(\xi)-\frac{2f(c)}{(c-1)(c-0)}=0,\ \xi_1<\xi<\xi_2. \]

再由\(|f''|\leqslant 1,f(0)=f(1)=0\),立即得到

\[|f(c)|=\frac{1}{2}\big|f''(\xi)(c-1)c\big|\leqslant \frac{1}{2}c(1-c),\ \forall c\in [0,1]. \]

\(x\in [0,1]\)利用Taylor公式,有

\[f(0)=f(x)+f'(x)(0-x)+\frac{1}{2}f''(\alpha)\big(0-x\big)^2, \]

\[f(1)=f(x)+f'(x)(1-x)+\frac{1}{2}f''(\beta)\big(1-x\big)^2. \]

两式相减,可得

\[|f'(x)|\leqslant \frac{1}{2}|f''(\alpha)|x^2+\frac{1}{2}|f''(\beta)|\big(1-x\big)^2\leqslant \frac{x^2+\big(1-x\big)^2}{2}. \]

至此,命题得证.\(\qquad \vartriangleleft\)

\(\color{red}{注:}\) 为证\(|f|\leqslant \frac{1}{8}\)还可以设\(x_0\)\(|f|\)的最大值点,则

\[|f(x_0)|=\max_{0\leqslant x\leqslant 1}|f(x)|,\ f'(x_0)=0. \]

\(\text{Taylor}\)公式可得

\[f(0)=f(x_0)+f'(x_0)(0-x_0)+\frac{f''(\xi)}{2}\big(0-x_0\big)^2,\ x_0\in \Big[0,\frac{1}{2}\Big]. \]

\[f(1)=f(x_0)+f'(x_0)(1-x_0)+\frac{f''(\eta)}{2}\big(1-x_0\big)^2,\ x_0\in \Big[\frac{1}{2},1\Big]. \]

以上两式均表明\(|f(x_0)|\leqslant \frac{1}{8}\).


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM