如何證明根號二不是有理數


眾所周知,任意有理數均可寫為兩互質整數的比,即\(∀x∈Q,∃ m,n∈Z,且m與n互質,滿足x=\frac{m}{n}。\)

若√2為有理數,設存在互質整數m、n,滿足\(√2=\frac{m}{n},即2n^2=m^2\),顯然m為偶數。

不妨設m=2k,k∈Z,所以\(2n^2=m^2=4k^2,即2k^2=n^2\),顯然n為偶數,則m,n不互質,矛盾,即√2不是有理數。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM