函數極限的柯西收斂准則


以下內容來自中科大數學分析教程P73,定理2.4.7
\(函數在x_{0}點的極限的定義\)
\(若存在l,\forall \epsilon>0,\exists\delta>0,使得當|x-x_{0}|<\delta\)
\(則有|f(x)-l|<\epsilon,即稱l為f(x)當x趨近於x_{0}的極限\)

\(定理:函數f(x)在x_{0}處有極限的充要條件是\forall \epsilon>0,\exists\delta>0,\)
\(\quad\quad 使得任意x_{1},x_{2}\in U(x_{0},\delta)時,有\)
\(\quad\quad |f(x_{1})-f(x_{2})|<\epsilon\)
證明:
1.必要性
\(若f(x)在x_{0}點的極限為l,即\forall \frac{\epsilon}{2}>0,\exists\delta,當x_{1},x_{2}\in U(x_{0},\delta)\)
\(有|f(x_{1})-l|<\frac{\epsilon}{2},|f(x_{2})-l|<\frac{\epsilon}{2}\)
\(則:|f(x_{1})-f(x_{2})|=|f(x_{1})+l-l-f(x_{2})|\)
\(\quad\quad \leqslant |f(x_{1})-l|+|f(x_{2})-l|\)
\(\quad\quad\leqslant\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM