-
\[\begin{aligned}&\int \sin ax\sin bxdx=-\dfrac{\sin \left( a+b\right) x}{2 \left( a+b\right) }+\dfrac{\sin \left( a-b\right) x}{2 \left( a-b\right) }+C\\ &\int \cos ax\cos bxdx=\dfrac{\sin \left( a+b\right) x}{2 \left( a+b\right) }+\dfrac{\sin \left( a-b\right) x}{2 \left( a-b\right) }+C\\ &\int \sin ax\cos bxdx=-\dfrac{\cos \left( a+b\right) x}{2 \left( a+b\right) }-\dfrac{\cos \left( a-b\right) x}{2 \left( a-b\right) }+C\end{aligned} \]
積化和差
-
\[\int\mathrm{e}^{ax}\sin bx\mathrm{d}x=\frac{(a\sin bx-b\cos bx)}{a^2+b^2}\mathrm{e}^{ax}+C\\ \int\mathrm{e}^{ax}\cos bx\mathrm{d}x=\frac{(b\sin bx+a\cos bx)}{a^2+b^2}\mathrm{e}^{ax}+C \]
證明式2.1
令:
\[\begin{cases}u=\sin bx,v'=\mathrm{e}^{ax}\\u'=b\cos bx,v=\frac{1}{a}\mathrm{e}^{ax}\end{cases} \]所以:
\[原式=\frac{1}{a}\mathrm{e}^{ax}\sin bx-\frac{b}{a}\int \mathrm{e}^{ax}\cos bx\mathrm{d}x \]再令:
\[\begin{cases}u=\cos bx,v'=\mathrm{e}^{ax}\\u'=-b\sin bx,v=\frac{1}{a}\mathrm{e}^{ax}\end{cases} \]所以:
\[原式=\frac{1}{a}\mathrm{e}^{ax}\sin bx-\frac{b}{a}\left[\frac{1}{a}\mathrm{e}^{ax}\cos bx-\left(-\frac{b}{a}\right)\int \mathrm{e}^{ax}\sin bx\mathrm{d}x\right] \]整理得:
\[\int\mathrm{e}^{ax}\sin bx\mathrm{d}x=\frac{(a\sin bx-b\cos bx)}{a^2+b^2}\mathrm{e}^{ax}+C \]