變限積分求導公式證明及其推論
1.變上限積分
- 若函數 \(f (x)\)在$[a, b] \(上連續 , 對任意\) x∈[a, b]$, 定義變上限定積分 :
\[Φ(x) = \int_a^xf (t) dt ,x∈[a, b] \]
2.引理
- 若函數 \(f (x)\) 在 $[a, b] $上連續,則變上限定積分 \(Φ(x) = \int_a^xf (t) dt ,x∈[a, b]\) 在$ [a, b] $上可導 , 且 \(Φ' (x) = f (x)\).
證明:
任取\(x∈[a, b]\),改變量\(\triangle x\)滿足\(x+\triangle x\in[a,b]\),對應的改變量\(\triangle\Phi=\Phi(x+\triangle x)-\Phi(x)\)滿足:
\[\begin{align} \triangle\Phi=&\Phi(x+\triangle x)-\Phi(x)\\ =&\int_a^{x+\triangle x}f(t)dt-\int_a^{x}f(t)dt\\ =&\int_x^{x+\triangle x}f(t)dt \end{align} \]
由積分中值定理:
\[\begin{align} &\exist\xi\in[x,x+\triangle x]\sub[a,b]\\ s.t.&\to\int_x^{x+\triangle x}f(t)dt=f(\xi)\cdot\triangle x\\ \therefore f(\xi)&=\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x} \end{align} \]
因為\(f(x)\)在\([a,b]\)上連續,所以:
\[\lim_{\triangle x\to0}f(\xi)=f(x) \]
即:
\[f(x)=\lim_{\triangle x\to0}\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x}=\frac{d}{dx}(\int_a^{x}f(t)dt) \]
3.重要推論
若函數\(f(x)\)在\([a,b]\)上連續,\(\phi(x),\varphi(x)\)在\([a,b]\)上可微,則
\[\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x) \]
證明:
這里只給出積分上限為復合函數的情況下的證明,下限同理。
設\(F(x)\)是\(f(x)\)的一個原函數,設:
\[\begin{cases} u=\phi(x)\\ v=\varphi(x) \end{cases},x\in[a,b] \]
則原式為:
\[\begin{align} \frac{d}{dx}(\int_{a}^{\phi(x)}f(t)dt)=& \frac{d}{dx}(\int_{a}^{u}f(t)dt)\\ (由鏈式求導法則)=&\frac{du}{dx}\cdot\frac{d}{du}(\int_{a}^{u}f(t)dt)\\ (由引理)=&\frac{du}{dx}\cdot f(u)\\ =&\frac{d}{dx}\phi(x)\cdot f(u)\\ =&f(\phi(x))\cdot\phi'(x) \end{align} \]
下限同理可證,於是可以得出:
\[\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x) \]