求極限的方法:

1.普通求極限
我們知道求極限的考點往往都是考分子分母型的,因為這樣可以有效利用等價/高階/低階無窮小的理論,即使求極限是加減乘的類型,我們也盡可能要轉化為除法的類型(這就是七種未定式),然而,知道這些還不夠,因為考研是一項選拔性考試,不是水平考核性質的考試,學會將應對水平考試的態度和習慣轉化為應對選拔性考試十分重要,在此基礎上,要清楚的認識到,高數教科書上的題只是最基本的,要應付考研,需要有更深入的思維。在求極限方面也是一樣(所以最基本的洛必達法則一般用不上)。
例題一、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNzcXJ0JTdCOXglNUUlN0IyJTdEJTJCMngtMyU3RCUyQjJ4JTJCMSU3RCU3QiU1Q3NxcnQlN0J4JTVFJTdCMiU3RCUyQnNpbiU1RSU3QjIlN0R4JTdEJTdEJTdE.png)
面對這道題,用等價/高階/低階無窮小顯得不能用(因為是趨近於無窮),但是,我們就要比誰更大,即尋找最大項(張帆老師把這個叫“大哥理論”),然后使用無窮大替換(即用最大項替換全部),在
的時候,分子分母的最大項是冪次最高項,在
的時候分子分母的最大項是冪次最低項,所以對這道題來說,我們應該尋找冪次最高項,對分子來說,
和
是同一冪次的,所以,最大冪次是1,所以我們就把邊上那個1和根式里面的
忽略掉就行了,對於分母來說,最大冪次也是1,至於
的冪次,因為
始終是小於等於一的,所以可以把他的冪次當作是常數,也就是0,可以忽略掉,這樣一來公式就變成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNzcXJ0JTdCOXglNUUlN0IyJTdEJTdEJTJCMnglN0QlN0IlNUNzcXJ0JTdCeCU1RSU3QjIlN0QlN0QlN0QlN0QlM0QlNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNsZWZ0JTdDKzN4KyU1Q3JpZ2h0JTdDJTJCMnglN0QlN0IlNUNsZWZ0JTdDK3grJTVDcmlnaHQlN0MlN0QlN0Q=.png)
由於
是趨向於負無窮的,所以原式等價於
也就是1。
例題二、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDc3FydCU1QjMlNUQlN0IxJTJCMnglN0QtMSU3RCU3QmxuJTI4Mi1jb3N4JTJCc2lueCUyOSU3RCU3RA==.png)
基本操作,
里的東西減去個1然后等價無窮小替換.![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyU1Q2xpbV8lN0JBKyU1Q3JpZ2h0YXJyb3crMSU3RGxuJTI4QSUyOSUyNiUzRCU1Q2xpbV8lN0JBKyU1Q3JpZ2h0YXJyb3crMSU3RGxuJTI4QS0xJTJCMSUyOSU1QyU1QyslMjYlM0QlNUNsaW1fJTdCJTI4QS0xJTI5KyU1Q3JpZ2h0YXJyb3crMCU3RGxuJTI4MSUyQkEtMSUyOSU1Q3NpbStBLTElNUNlbmQlN0JhbGlnbiUyQSU3RCs=.png)
變成了 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QiU1Q3NxcnQlNUIzJTVEJTdCMSUyQjJ4JTdELTElN0QlN0IxLWNvc3glMkJzaW54JTdEJTdEKw==.png)
我們知道,等價/高階/低階無窮小替換的本質其實是轉化為冪函數的形態,所以為了在0處能夠把sinx和cosx轉化為冪函數,在加減法的環境下應用等價無窮小,就要用到麥克勞林公式(平時老師說不能在加減法情況下應用等價無窮小是因為精度不夠,應用了麥克勞林公式就能確保精度,那么到底要展開到哪幾項呢?因為分子分母的最大項精度要保持一致才能互相消去,比如這道題就要分母上下可以同時展開到
的一次冪就能互相消去。),其中
的展開是
而
的展開是
,所以
保留最大項目
,
保留1,而分子中的
也可以展開為
(這里用到了一個展開公式 (
當然你直接用麥克勞林也行,只不過用公式會更快一點),由於分母最大項是1次冪,所以保留
即可這樣原式就變成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QjElMkIlNUNmcmFjJTdCMiU3RCU3QjMlN0R4LTElN0QlN0IxLTElMkJ4JTdEJTdEJTNEJTVDZnJhYyU3QjIlN0QlN0IzJTdEKw==.png)
例題三、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCZS1lJTVFJTdCY29zeCU3RCU3RCU3QiU1Q3NxcnQlN0IxJTJCeCU1RSU3QjIlN0QlN0QtMSU3RCU3RA==.png)
這道題需要用到一個小技巧,即
,則分母變為
,
在
的時候接近於e,由於非零因式直接帶入原則所以可以去掉,剩下來的用以上兩個例題的技巧可以輕松解決(事實上,類似
這樣的式子有一個特點,那就是
型,這一類型的極限一般是提取一個公共因子使得成為
類型)。
例題四、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCeCU1RTIlMjhlJTVFJTVDZnJhYzF4LTElMjklN0QteA==.png)
由於是
所以可以用泰勒公式展開得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyVFNSU4RSU5RiVFNSVCQyU4RiUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlN0J4JTVFMiUyOCU1Q2ZyYWMxeCUyQiU1Q2ZyYWMxJTdCMnglNUUyJTdEJTJCJTVDZnJhYzElN0I2eCU1RTMlN0QlMkJvJTI4JTVDZnJhYzElN0J4JTVFMyU3RCUyOSUyOSU3RCU1QyU1QyslMjYlM0QlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEeCUyQiU1Q2ZyYWMxMiUyQm8lMjglNUNmcmFjMXglMjkteCU1QyU1QyslMjYlM0QlNUNmcmFjMTIrJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
例題五、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCbG4lMjgxJTJCZSU1RSU3QiU1Q2ZyYWMlN0IyJTdEJTdCeCU3RCU3RCUyOSU3RCU3QmxuJTI4MSUyQmUlNUUlN0IlNUNmcmFjJTdCMSU3RCU3QnglN0QlN0QlMjklN0QlN0Q=.png)
這里要注意
的時候分為
和
兩類,
的時候
,先等價無窮小替換,得到
以及
原式變成
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUtJTdEJTdCZSU1RSU3QiU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU3RCU3RCUzRDA=.png)
而
的時候原式變成了
這個時候要求趨向於無窮的時候,雖然冪函數不適用於這種情況,但冪函數找最大項的本質是無窮大替換,所以我們可以用到速度的階的理論,在x趨向於無窮或者0的時候,指數函數>>冪函數>>對數函數,這個式子里ln里的1完全可以被替換掉,因此原式就變成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUlMkIlN0QlN0IlNUNmcmFjJTdCbG5lJTVFJTdCJTVDZnJhYyU3QjIlN0QlN0J4JTdEJTdEJTdEJTdCbG5lJTVFJTdCJTVDZnJhYyU3QjElN0QlN0J4JTdEJTdEJTdEJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTVFJTJCJTdEJTdCJTVDZnJhYyU3QiU1Q2ZyYWMlN0IyJTdEJTdCeCU3RCU3RCU3QiU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU3RCU3RCUzRDI=.png)
同理,以下極限也可以應用這個理論,用一個因式替換全部:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUlMkIlN0QlN0IlNUNzcXJ0JTdCeCU3RGxueCU3RCUzRDA=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCJTVDZnJhYyU3QnglNUUlN0I1JTdEJTdEJTdCZSU1RSU1Q2ZyYWMlN0J4JTdEJTdCMiU3RCU3RCU3RCUzRDA=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QnglNUUlN0IyJTdEJTdEJTdCZSU1RXglN0QlM0Qw.png)
例題六、
遇到有
的式子,可以先想辦法合並
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCeC1sbiUyOGUlNUV4JTJCMSUyOSU3RCUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlN0JsbmUlNUV4LWxuJTI4ZSU1RXglMkIxJTI5JTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyslMkIlNUNpbmZ0eSU3RCU3QmxuJTVDZnJhYyU3QmUlNUV4JTdEJTdCZSU1RXglMkIxJTdEJTdEJTNEbG4xJTNEMA==.png)
例題七、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0JlJTVFJTdCeCU3RCUyQngrZSU1RSU3QnglN0QlN0QlN0JlJTVFJTdCeCU3RC0xJTdELSU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU1Q3JpZ2h0JTI5.png)
第一步先通分化為乘除法得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0JlJTVFJTdCeCU3RCUyQngrZSU1RSU3QnglN0QlN0QlN0JlJTVFJTdCeCU3RC0xJTdELSU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU1Q3JpZ2h0JTI5JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCeGUlNUV4JTJCeCU1RTJlJTVFeC1lJTVFeCUyQjElN0QlN0J4JTI4ZSU1RXgtMSUyOSU3RCU1Q3JpZ2h0JTI5.png)
此時,分母無窮小替換得 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0J4ZSU1RXglMkJ4JTVFMmUlNUV4LWUlNUV4JTJCMSU3RCU3QnglMjhlJTVFeC0xJTI5JTdEJTVDcmlnaHQlMjklM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0J4ZSU1RXglMkJ4JTVFMmUlNUV4LWUlNUV4JTJCMSU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjk=.png)
此時,我們可以想到,分子的最大項為次數最小的項,通過對分子進行麥克勞林展開可以發現,
次數最小的項不是
就是
,當然由於
被消掉了,因此展開得到分子: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnhlJTVFeCUyQnglNUUyZSU1RXgtZSU1RXglMkIxJTdEJTdCeCU1RTIlN0QlNUNyaWdodCUyOSUyNiUzRCU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnglMjgxJTJCeCUyQm8lMjh4JTI5JTI5JTJCeCU1RTIlMjgxJTJCeCUyQm8lMjh4JTI5JTI5LSUyODElMkJ4JTJCJTVDZnJhYyU3QnglNUUyJTdEJTdCMiUyMSU3RCUyQm8lMjh4JTVFMiUyOSUyOSUyQjElN0QlN0J4JTVFMiU3RCU1Q3JpZ2h0JTI5JTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCeCUyQnglNUUyJTJCbyUyOHglNUUyJTI5JTJCeCU1RTIlMkJ4JTVFMyUyQm8lMjh4JTVFNCUyOS0xLXgtJTVDZnJhYyU3QnglNUUyJTdEJTdCMiUyMSU3RC1vJTI4eCU1RTIlMjklMkIxJTdEJTdCeCU1RTIlN0QlNUNyaWdodCUyOSU1QyU1QyUyNiUzRCU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnglNUUyJTJCeCU1RTItJTVDZnJhYyU3QnglNUUyJTdEMiUyQm8lMjh4JTVFNCUyOSU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0IlNUNmcmFjMzJ4JTVFMiU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNmcmFjMzIlNUNlbmQlN0JhbGlnbiUyQSU3RA==.png)
注意,這里有些同學可能覺得分子化到
就夠了,沒必要化到
項,事實上,因為分母的最小項是
,所以分子務必也要化到
來確保精度。
例題八、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCMSUyQiU1Q3Rhbit4JTdELSU1Q3NxcnQlN0IxJTJCJTVDc2luK3glN0QlN0QlN0J4KyU1Q2xuKyUyODElMkJ4JTI5LXglNUUlN0IyJTdEJTdE.png)
遇到
的時候要首先想到平方差公式來化簡,如在這道題使用平方差公式化簡后變成 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNiU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QrJTVDZnJhYyU3QiUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QtJTVDc3FydCU3QjElMkIlNUNzaW4reCU3RCUyOSUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QlMkIlNUNzcXJ0JTdCMSUyQiU1Q3Npbit4JTdEJTI5JTdEJTdCJTVDbGVmdCUyOHgrJTVDbG4rJTI4MSUyQnglMjkteCU1RSU3QjIlN0QlNUNyaWdodCUyOSUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QlMkIlNUNzcXJ0JTdCMSUyQiU1Q3Npbit4JTdEJTI5JTdEJTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCslNUNmcmFjJTdCJTVDdGFuK3gtJTVDc2luK3grJTdEJTdCJTI4eCslNUNsbislMjgxJTJCeCUyOS14JTVFJTdCMiU3RCUyOSU1Q2Nkb3QyJTdEJTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCslNUNmcmFjJTdCJTVDZnJhYyU3QnglNUUzJTdEJTdCMiU3RCUyQm8lMjh4JTVFMyUyOSslN0QlN0IlMjh4KyUyOHgtJTVDZnJhYyslN0J4JTVFMiU3RCsyJTJCbyUyOHglNUUyJTI5JTI5LXglNUUlN0IyJTdEJTI5JTVDY2RvdDIlN0QlNUMlNUMlMjYlM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEKyU1Q2ZyYWMlN0IlNUNmcmFjJTdCeCU1RTMlN0QlN0IyJTdEJTJCbyUyOHglNUUzJTI5KyU3RCU3QiUyOHglNUUyLSU1Q2ZyYWMrJTdCeCU1RTMrJTdEMiUyQm8lMjh4JTVFMyUyOS14JTVFMiUyOSU1Q2Nkb3QyJTdEJTVDJTVDJTI2JTNELSU1Q2ZyYWMxMiU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
例題九、化冪指函數為對數
這一類的題比較特殊,比如下面這道題會有同學將兩個重要極限之一
帶入求得答案1,事實上,這個答案是錯誤的,正確的答案是1
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNiU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlNUNmcmFjJTdCJTI4MSUyQiU1Q2ZyYWMrJTdCMSU3RCU3QnglN0QlMjklNUUlN0J4JTVFMiU3RCU3RCU3QmUlNUV4JTdEJTVDJTVDJTI2JTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyslMkIlNUNpbmZ0eSU3RCU1Q2ZyYWMlN0JlJTVFJTdCeCU1RTJsbiUyODElMkIlNUNmcmFjMXglMjklN0QlN0QlN0JlJTVFeCU3RCU1QyU1QyUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0RlJTVFJTdCeCU1RTJsbiUyODElMkIlNUNmcmFjMXglMjkteCU3RCU1QyU1QyUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0RlJTVFJTdCeCU1RTIlNUIlNUNmcmFjMXgtJTVDZnJhYzEyJTVDZnJhYzElN0J4JTVFMiU3RCUyQm8lMjglNUNmcmFjMSU3QnglNUUyJTdEJTI5JTVELXglN0QlNUMlNUMlMjYlM0RlJTVFJTdCLSU1Q2ZyYWMxMiU3RCU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
設函數
在
的某領域內有定義,且
,求 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlMjgxJTJCMmYlMjh4JTI5JTI5JTVFJTdCJTVDZnJhYzElN0JzaW54JTdEJTdEJTdE.png)
用同樣方法化為對數做。
例題十、
某些函數等價無窮小也比較難替換,可以用拉格朗日中值定理來等價無窮小替換
數列極限: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1JJTNEJTVDbGltXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU3Qm4lNUUyJTI4YXJjdGFuJTVDZnJhYzJuLWFyY3RhbiU1Q2ZyYWMyJTdCJTI4biUyQjElMjklN0QlMjklN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEJTI2YXJjdGFuJTVDZnJhYzJuLWFyY3RhbiU1Q2ZyYWMyJTdCbiUyQjElN0QlNUMlNUMlMjYlM0RmJTI4JTVDZnJhYzJuJTI5LWYlMjglNUNmcmFjMiU3Qm4lMkIxJTdEJTI5JTVDJTVDJTI2JTNEZiUyNyUyOCU1Q3hpJTI5JTI4JTVDZnJhYzJuLSU1Q2ZyYWMyJTdCbiUyQjElN0QlMjklNUMlNUMlMjYlM0QlNUNmcmFjMSU3QjElMkIlNUN4aSU1RTIlN0QlNUNjZG90JTVDZnJhYzIlN0JuJTI4biUyQjElMjklN0QlNUMlNUMlMjYlRTclOTQlQjElRTQlQkElOEUlNUNmcmFjMiU3Qm4lMkIxJTdEJTNDJTVDeGklM0MlNUNmcmFjMm4lRTYlOTUlODUlNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYzElN0IxJTJCJTVDeGklNUUyJTdEJTNEMSU3RCU1QyU1QyUyNiVFNSU4RSU5RiVFNSVCQyU4RiU1Q3NpbSU1Q2ZyYWMyJTdCbiUyOG4lMkIxJTI5JTdEJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
從而 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1JJTNEJTVDbGltXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU3Qm4lNUUyJTVDY2RvdCU1Q2ZyYWMyJTdCbiUyOG4lMkIxJTI5JTdEJTdEJTNEMg==.png)
例題十、綜合應用
這一類較為繁瑣,可能同時用到變限積分、泰勒、等價無窮小、洛必達,一般做題的順序是先等價無窮小、再泰勒、最后用洛必達,中間化簡的過程中遇到極限為常數的因子直接帶常數。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjKyU3QiU1Q2ludF8wJTVFeHQlNUUyc2luJTI4eCU1RTMtdCU1RTMlMjlkdCU3RCU3QiUyOGUlNUUlN0J0YW54JTdELWUlNUV4JTI5eCU1RTMlN0Q=.png)
首先令
化簡變限積分得到
提出
得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QmUlNUV4JTI4ZSU1RSU3QnRhbngteCU3RC0xJTI5eCU1RTMlN0QlN0Q=.png)
使用等價無窮小替換
並使用常數替換極限為常數的因子
得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QiUyOHRhbngteCUyOXglNUUzJTdEJTdE.png)
使用泰勒公式得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QiUyOCU1Q2ZyYWMxM3glNUUzJTJCbyUyOHglNUUzJTI5JTI5eCU1RTMlN0QlN0QrJTNEJTVDZnJhYzEzJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QiU1Q2ludF8wJTVFJTdCeCU1RTMlN0RzaW51ZHUlN0QlN0IlNUNmcmFjMTN4JTVFNiUyQm8lMjh4JTVFNiUyOSU3RCU3RA==.png)
最后使用洛必達法則
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCM3glNUUyc2lueCU1RTMlN0QlN0IyeCU1RTUlMkJvJTI4eCU1RTUlMjklN0QlN0QlM0QlNUNmcmFjMTI=.png)
下面附上一些常用泰勒展開和等價無窮小,考試的時候務必要記住:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmNhc2VzJTdEKyUyODElMjkrJTVDYmVnaW4lN0JjYXNlcyU3RCtzaW54JTNEeC0lNUNmcmFjJTdCeCU1RTMlN0QlN0I2JTdEJTJCbyUyOHglNUUzJTI5JTVDKyVFMiU5MSVBMCU1QyU1QythcmNzaW54JTNEeCUyQiU1Q2ZyYWMlN0J4JTVFMyU3RCU3QjYlN0QlMkJvJTI4eCU1RTMlMjkrJTVDZW5kJTdCY2FzZXMlN0QlNUMlNUMrJTI4MiUyOSslNUNiZWdpbiU3QmNhc2VzJTdEK3RhbnglM0R4JTJCJTVDZnJhYyU3QnglNUUzJTdEJTdCMyU3RCUyQm8lMjh4JTVFMyUyOSU1QyslRTIlOTElQTElNUMlNUMrYXJjdGFueCUzRHgtJTVDZnJhYyU3QnglNUUzJTdEJTdCMyU3RCUyQm8lMjh4JTVFMyUyOSslNUNlbmQlN0JjYXNlcyU3RCU1QyU1QyslMjgzJTI5KyU1Q2JlZ2luJTdCY2FzZXMlN0QrZSU1RXglM0QxJTJCeCUyQiU1Q2ZyYWMlN0J4JTVFMiU3RCU3QjIlMjElN0QlMkIlNUNmcmFjJTdCeCU1RTMlN0QlN0IzJTIxJTdEJTJCbyUyOHglNUUzJTI5JTVDJTVDK2xuJTI4MSUyQnglMjklM0R4LSU1Q2ZyYWMlN0J4JTVFMiU3RCU3QjIlN0QlMkIlNUNmcmFjJTdCeCU1RTMlN0QlN0IzJTdEJTJCbyUyOHglNUUzJTI5KyU1Q2VuZCU3QmNhc2VzJTdEJTVDJTVDKyUyODQlMjkrJTVDYmVnaW4lN0JjYXNlcyU3RCtjb3N4JTNEMS0lNUNmcmFjJTdCeCU1RTIlN0QlN0IyJTdEJTJCJTVDZnJhYyU3QnglNUU0JTdEJTdCNCUyMSU3RCUyQm8lMjh4JTVFNCUyOSU1QyslRTIlOTElQTIlNUMlNUMrJTI4MSUyQnglMjklNUUlN0IlNUNhbHBoYSU3RCUzRDElMkIlNUNhbHBoYSt4JTJCJTVDZnJhYyU3QiU1Q2FscGhhJTI4JTVDYWxwaGEtMSUyOSU3RCU3QjIlN0R4JTVFJTdCMiU3RCUyQm8lMjh4JTVFJTdCMiU3RCUyOSVFMiU5MSVBMyslNUNlbmQlN0JjYXNlcyU3RCU1QyU1QysrJTI4NSUyOSthJTVFeCUzRDElMkJsbmF4JTJCJTVDZnJhYyslN0JsbiU1RTJhJTdENHglNUUyJTJCJTVDZnJhYyslN0JsbiU1RTNhJTdENit4JTVFMyUyQm8lMjh4JTVFMyUyOSVFMiU5MSVBNCU1Q2VuZCU3QmNhc2VzJTdE.png)
其中 ①式減②式可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD10YW54LXNpbnglNUNzaW0lNUNmcmFjJTdCeCU1RTMlN0QlN0IyJTdE.png)
1減③式可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lMjgxLWNvc3glMjklNUNzaW0rJTVDZnJhYyU3QnglNUUyJTdEJTdCMiU3RA==.png)
④式減1可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lMjgxJTJCeCUyOSU1RSU1Q2FscGhhLTErJTVDc2ltJTVDYWxwaGEreA==.png)
⑤式減1,可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1hJTVFeC0xJTVDc2ltK2xuYXg=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1zaW54JTVDc2ltK2FyY3NpbnglNUNzaW0rdGFueCU1Q3NpbSthcmN0YW54JTVDc2ltK2UlNUV4LTElNUNzaW0rbG4lMjgxJTJCeCUyOSU1Q3NpbSt4.png)
還有一些要記住 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14JTVFMm8lMjglNUNmcmFjJTdCMSU3RCU3QnglNUUzJTdEJTI5JTNEbyUyOCU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCUyOQ==.png)
2.變限積分求極限
一句話,變限積分求極限,一般用洛必達法則,既然應用了洛必達法則,那么變限積分的求導一定又是過不去的一道坎。這個我打算放到求導那章整理。
此外,某些變限積分的極限化簡可以用泰勒公式來簡化.
例1 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTdEc2ludGR0JTdEJTdCeCU1RTIlN0Q=.png)
這道題常規做法是用洛必達化為 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCc2lueCU3RCU3QjJ4JTdEJTNEJTVDZnJhYzEy.png)
實際上用泰勒展開也可以做
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTdEc2lueCU3RCU3QnglNUUyJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDZnJhYyU3QiU1Q2ludF8lN0IwJTdEJTVFJTdCeCU3RCU3QiU1QnQlMkJvJTI4dCUyOSU3RCU1RCU3RCU3QnglNUUyJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDZnJhYyU3QiU1Q2ZyYWMlN0J4JTVFMiU3RDIlMkJvJTI4eCU1RTIlMjklN0QlN0J4JTVFMiU3RCUzRCU1Q2ZyYWMxMg==.png)
例2 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTVFJTdCMiU3RCU3RCslNUNhcmNzaW4rdCtkK3QlN0QlN0J4JTVFNCU3RA==.png)
原式
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTVFJTdCMiU3RCU3RCUyOHQlMkJvJTI4dCUyOSUyOStkK3QlN0QlN0J4JTVFNCU3RCUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2ZyYWMlN0IlNUNmcmFjJTdCeCU1RTQlN0QyJTJCbyUyOHglNUU0JTI5JTdEJTdCeCU1RTQlN0QlM0QlNUNmcmFjMTI=.png)
例3 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyUyQiU1Q2luZnR5JTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMit4JTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkJlJTVFJTdCdCU3RCU3RCtkK3Q=.png)
這道題分母為1,不能用洛必達,又是趨於無窮不能用泰勒,只能用夾逼准則了。
當
時
趨於0且單調遞減
故當
時有 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCJTVDc3FydCU3QjJ4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0IyeCU3RCU3RCUzQyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCdCU3RCU3RCUzQyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCeCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCeCU3RCU3RA==.png)
由於
可以被當作常數
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0IyeCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCMnglN0QlN0QlNUNtYXRocm0lN0JkJTdEK3QlM0QlNUNmcmFjJTdCJTVDc3FydCU3QjJ4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0IyeCU3RCU3RCslNUNpbnRfJTdCeCU3RCU1RSU3QjIreCU3RCslNUNtYXRocm0lN0JkJTdEK3QlM0QlNUNmcmFjJTdCMngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QjJ4JTdEJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdEJTVDbWF0aHJtJTdCZCU3RCt0JTNEJTVDZnJhYyU3QiU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMnglN0QrJTVDbWF0aHJtJTdCZCU3RCt0JTNEJTVDZnJhYyU3QngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QnglN0QlN0Q=.png)
故
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCMngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QjJ4JTdEJTdEJTNDJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0J0JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J0JTdEJTdEKyU1Q21hdGhybSU3QmQlN0QrdCUzQyU1Q2ZyYWMlN0J4KyU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdE.png)
由於上式左右兩端在
時候的極限都為0
故由夾逼准則
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyUyQiU1Q2luZnR5JTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMit4JTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkJlJTVFJTdCdCU3RCU3RCtkK3QlM0Qw.png)
3.數列求極限
數列求極限的方法主要用到了夾逼准則、單調有界准則、化為定積分求解
例題1:
證明:(1) ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMSU3QiU1Q3NxcnQlN0IybiUyQjElN0QlN0QlM0MlNUNzcXJ0JTdCMm4lMkIxJTdELSU1Q3NxcnQlN0Iybi0xJTdEJTNDJTVDZnJhYzElN0IlNUNzcXJ0JTdCMm4tMSU3RCU3RA==.png)
(2)設
,則數列極限存在
解:
(1)遇到有根式的分母,首先想到的是分子分母有理化,不等式左右兩側分母無法進一步有理化,只能分式中間開始有理化,同時乘以
,使用平方差公式得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMSU3QiU1Q3NxcnQlN0IybiUyQjElN0QlN0QlM0MlNUNmcmFjKyU3QjIlN0QlN0IlNUNzcXJ0JTdCMm4lMkIxJTdEJTJCJTVDc3FydCU3QjJuLTElN0QlN0QlM0MlNUNmcmFjMSU3QiU1Q3NxcnQlN0Iybi0xJTdEJTdE.png)
變形得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMiU3QjIlNUNzcXJ0JTdCMm4lMkIxJTdEJTdEJTNDJTVDZnJhYyslN0IyJTdEJTdCJTVDc3FydCU3QjJuJTJCMSU3RCUyQiU1Q3NxcnQlN0Iybi0xJTdEJTdEJTNDJTVDZnJhYzIlN0IyJTVDc3FydCU3QjJuLTElN0QlN0Q=.png)
上式很容易看出成立。
(2)數列極限,要用到單調有界准則,至於怎么用,第一問給了提示。首先判斷數列的單調性,讓 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14XyU3Qm4lMkIxJTdELXhfbiUzRCU1Q2ZyYWMxJTdCJTVDc3FydCU3QjJuJTJCMSU3RCU3RC0lNUNmcmFjMSU3QiU1Q3NxcnQlN0Iybi0xJTdEJTdEJTJCJTVDc3FydCU3QjJuLTElN0QtJTVDc3FydCU3QjJuJTJCMSU3RCUzQzA=.png)
故數列單調遞減,這樣只要證明數列大於某個數就行了,由第一問的結果可以將數列放縮為:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNnhfbiUzRS0xJTJCJTVDc3FydDMtJTVDc3FydDMlMkIlNUNzcXJ0NS0uLi4tJTVDc3FydCU3QjJuLTElN0QlMkIlNUNzcXJ0JTdCMm4lMkIxJTdELSU1Q3NxcnQlN0Iybi0xJTdEJTVDJTVDJTI2JTNEJTVDc3FydCU3QjJuJTJCMSU3RC0lNUNzcXJ0JTdCMm4tMSU3RC0xJTVDJTVDJTI2JTNEJTVDZnJhYyslN0IyJTdEJTdCJTVDc3FydCU3QjJuJTJCMSU3RCUyQiU1Q3NxcnQlN0Iybi0xJTdEJTdELTElM0UtMSU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
故
有界,則
有極限。
例題2:
設數列
滿足:
,證明
收斂,並求 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uJTdE.png)
解:可以用拉格朗日證明數列的單調性
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCeF8lN0JuJTJCMSU3RCU3RCUzRCU1Q2ZyYWMlN0JlJTVFJTdCeF9uJTdELTElN0QlN0J4X24lN0QlM0QlNUNmcmFjJTdCZSU1RSU3QnhfbiU3RC1lJTVFMCU3RCU3Qnhfbi0wJTdEJTNEZSU1RSU1Q3hpJTI4MCUzQyU1Q3hpJTNDeF9uJTI5JTVDJTVDK2UlNUUlN0J4X24lMkIxJTdELWUlNUUlN0J4X24lN0QlM0RlJTVFJTVDeGktZSU1RSU3QnhfbiU3RCUzQzAr.png)
由於
單調,故
單調遞減
由於
的具體公式沒有給出,而僅僅只給出了
,所以采用數學歸納法。
當
時, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14XzElM0Uw.png)
假設
時 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X2slM0Uw.png)
當
時 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCeF9rJTJCMSU3RCUzRCU1Q2ZyYWMrJTdCZSU1RSU3QnhfayU3RC0xJTdEJTdCeF9rJTdEJTNFMQ==.png)
則 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X2slMkIxJTNFMA==.png)
故對所有
都有 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X24lM0Uw.png)
由於
單調有界,故有極限。
這個時候,不妨設極限為一個常數
設 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uJTdEJTNEQQ==.png)
則 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF8lN0JuJTJCMSU3RCU3RCUzREE=.png)
故由 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uZSU1RSU3QnhfJTdCbiUyQjElN0QlN0QlM0RlJTVFJTdCeF9uJTdELTElN0Q=.png)
得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1BZSU1RUElM0RlJTVFQS0xKw==.png)
求得
,故極限為0。
例題3:
求極限 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTI4JTVDZnJhYyslN0JhcmN0YW4lNUNmcmFjMW4lN0QlN0JuJTJCMSU3RCUyQiU1Q2ZyYWMrJTdCYXJjdGFuJTVDZnJhYzJuJTdEJTdCbiUyQiU1Q2ZyYWMxMiU3RCUyQi4uLiUyQiU1Q2ZyYWMrJTdCYXJjdGFuJTVDZnJhYyU3Qm4lN0RuJTdEJTdCbiUyQiU1Q2ZyYWMxbiU3RCUyOSU3RA==.png)
這個要用到夾逼准則,而這種無窮數列恰好又能化為定積分。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYysxJTdCbiUyQjElN0QlMjglN0JhcmN0YW4lNUNmcmFjMW4lN0QlMkJhcmN0YW4lNUNmcmFjMm4lMkIuLi4lMkJhcmN0YW4lNUNmcmFjJTdCbiU3RG4lMjklN0QlNUNsZXElRTUlOEUlOUYlRTUlQkMlOEYlNUNsZXElNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYysxbiUyOCU3QmFyY3RhbiU1Q2ZyYWMxbiU3RCUyQmFyY3RhbiU1Q2ZyYWMybiUyQi4uLiUyQmFyY3RhbiU1Q2ZyYWMlN0JuJTdEbiUyOSU3RA==.png)
變形
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYytuJTdCbiUyQjElN0QlNUN0aW1lcyU1Q2ZyYWMxbiUyOCU3QmFyY3RhbiU1Q2ZyYWMxbiU3RCUyQmFyY3RhbiU1Q2ZyYWMybiUyQi4uLiUyQmFyY3RhbiU1Q2ZyYWMlN0JuJTdEbiUyOSU3RCU1Q2xlcSVFNSU4RSU5RiVFNSVCQyU4RiU1Q2xlcSU1Q2xpbV8lN0JuKyU1Q3JpZ2h0YXJyb3crJTVDaW5mdHklN0QlN0IlNUNmcmFjKzFuJTI4JTdCYXJjdGFuJTVDZnJhYzFuJTdEJTJCYXJjdGFuJTVDZnJhYzJuJTJCLi4uJTJCYXJjdGFuJTVDZnJhYyU3Qm4lN0RuJTI5JTdE.png)
轉化為積分 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNpbnRfJTdCMCU3RCU1RSU3QjElN0RhcmN0YW54ZHglNUNsZXElRTUlOEUlOUYlRTUlQkMlOEYlNUNsZXElNUNpbnRfJTdCMCU3RCU1RSU3QjElN0RhcmN0YW54ZHg=.png)
從而得到極限為
即 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTVDcGk0LSU1Q2ZyYWMxMmxuMg==.png)
例題4:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCMSU3RCU3QiU1Q3NxcnQlN0JuJTVFJTdCMiU3RCUyQm4lN0QlN0QlMkIlNUNmcmFjJTdCMSU3RCU3QiU1Q3NxcnQlN0JuJTVFJTdCMiU3RCUyQjIrbiU3RCU3RCUyQiU1Q2Nkb3RzJTJCJTVDZnJhYyU3QjElN0QlN0IlNUNzcXJ0JTdCbiU1RSU3QjIlN0QlMkJuJTVFJTdCMiU3RCU3RCU3RCU1Q3JpZ2h0JTI5.png)
這題一開始想到夾逼准則,但是實際上不太行,正確思路是化為定積分
原式= ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2ZyYWMxbiU1QiU1Q2ZyYWMxJTdCJTVDc3FydCU3QjElMkIlNUNmcmFjMW4lN0QlN0QlMkIlNUNmcmFjMSU3QiU1Q3NxcnQlN0IxJTJCJTVDZnJhYzJuJTdEJTdEJTJCLi4uJTJCJTVDZnJhYzElN0IlNUNzcXJ0JTdCMSUyQiU1Q2ZyYWMlN0JuJTdEbiU3RCU3RCU1RCUzRCU1Q3N1bV8lN0JpJTNEMSU3RCU1RSU3Qm4lN0QlN0IlNUNmcmFjMW4lNUNmcmFjMSU3QiU1Q3NxcnQlN0IxJTJCJTVDZnJhYyU3QmklN0QlN0JuJTdEJTdEJTdEJTdEJTNEJTVDaW50XyU3QjAlN0QlNUUlN0IxJTdEJTVDZnJhYzElN0IlNUNzcXJ0JTdCMSUyQnglN0QlN0RkeCUzRDIlNUNzcXJ0Mi0y.png)
例題5:
當
時, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCeCU3RCU3QjElMkJ4JTdEJTNDJTVDbG4rJTI4MSUyQnglMjklM0N4.png)
求極限
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjkrJTVDY2RvdHMlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOQ==.png)
我們知道,取對數可以解決的問題有兩種,一種是
的時候可以取對數,還有一種則是本例,把乘除化為加減
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEJTI2JTVDbGltK18lN0JuKyU1Q3JpZ2h0YXJyb3crJTVDaW5mdHklN0QlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5KyU1Q2Nkb3RzJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RGUlNUUlN0JsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjkrJTVDY2RvdHMlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSU3RCU1QyU1QyUyNiUzRCU1Q2xpbStfJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEZSU1RSU3QmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMSU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklMkJsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTJCJTVDY2RvdHMlMkJsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3Qm4lN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
由於 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1sbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTJCbG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IyJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUyQiU1Q2Nkb3RzJTJCbG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUzQyU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTJCJTVDY2RvdHMlMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTNEJTVDZnJhYyU3QiU1Q2ZyYWMlN0JuJTI4biUyQjElMjklN0QyJTdEJTdCbiU1RTIlN0QlM0QlNUNmcmFjMTIlMkIlNUNmcmFjMSU3QjJuJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTdEJTI2bG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUyQmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklMkIlNUNjZG90cyUyQmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0UlNUNmcmFjMSU3Qm4lNUUyJTJCMSU3RCUyQiU1Q2ZyYWMlN0IyJTdEJTdCbiU1RTIlMkIyJTdEJTJCJTVDY2RvdHMlMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUyJTJCbiU3RCU1QyU1QyUyNiUzRSU1Q2ZyYWMxJTdCbiU1RTIlMkJuJTdEJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFMiUyQm4lN0QlMkIlNUNjZG90cyUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RTIlMkJuJTdEJTVDJTVDJTI2JTNEJTVDZnJhYyU3QiU1Q2ZyYWMlN0JuJTI4biUyQjElMjklN0QyJTdEJTdCbiU1RTIlMkJuJTdEJTVDJTVDJTI2JTNEJTVDZnJhYzEyJTVDZW5kJTdCYWxpZ24lN0Q=.png)
故由夾逼准則得原式= ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCJTVDZnJhYzEyJTdE.png)
方法一:等價無窮小的轉化 在乘除中使用
方法二:極限的四則運算法則
方法三:洛必達法則
方法四:泰勒公式
方法五:兩多項式相除
6:無窮小與有界函數的處理方法
7:數列極限中等比等差數列公式的應用
8:數列極限中各項的拆分相加
9:利用Xn 與Xn+1極限相同求極限
10:夾逼准則
11:兩個重要極限的應用
12:當趨於無窮大時,不同函數趨於無窮的速度是不一樣的。
13:換元法
14:利用定積分求極限
15:重要的高階無窮小
