求极限的方法:

1.普通求极限
我们知道求极限的考点往往都是考分子分母型的,因为这样可以有效利用等价/高阶/低阶无穷小的理论,即使求极限是加减乘的类型,我们也尽可能要转化为除法的类型(这就是七种未定式),然而,知道这些还不够,因为考研是一项选拔性考试,不是水平考核性质的考试,学会将应对水平考试的态度和习惯转化为应对选拔性考试十分重要,在此基础上,要清楚的认识到,高数教科书上的题只是最基本的,要应付考研,需要有更深入的思维。在求极限方面也是一样(所以最基本的洛必达法则一般用不上)。
例题一、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNzcXJ0JTdCOXglNUUlN0IyJTdEJTJCMngtMyU3RCUyQjJ4JTJCMSU3RCU3QiU1Q3NxcnQlN0J4JTVFJTdCMiU3RCUyQnNpbiU1RSU3QjIlN0R4JTdEJTdEJTdE.png)
面对这道题,用等价/高阶/低阶无穷小显得不能用(因为是趋近于无穷),但是,我们就要比谁更大,即寻找最大项(张帆老师把这个叫“大哥理论”),然后使用无穷大替换(即用最大项替换全部),在
的时候,分子分母的最大项是幂次最高项,在
的时候分子分母的最大项是幂次最低项,所以对这道题来说,我们应该寻找幂次最高项,对分子来说,
和
是同一幂次的,所以,最大幂次是1,所以我们就把边上那个1和根式里面的
忽略掉就行了,对于分母来说,最大幂次也是1,至于
的幂次,因为
始终是小于等于一的,所以可以把他的幂次当作是常数,也就是0,可以忽略掉,这样一来公式就变成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNzcXJ0JTdCOXglNUUlN0IyJTdEJTdEJTJCMnglN0QlN0IlNUNzcXJ0JTdCeCU1RSU3QjIlN0QlN0QlN0QlN0QlM0QlNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QiU1Q2ZyYWMlN0IlNUNsZWZ0JTdDKzN4KyU1Q3JpZ2h0JTdDJTJCMnglN0QlN0IlNUNsZWZ0JTdDK3grJTVDcmlnaHQlN0MlN0QlN0Q=.png)
由于
是趋向于负无穷的,所以原式等价于
也就是1。
例题二、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDc3FydCU1QjMlNUQlN0IxJTJCMnglN0QtMSU3RCU3QmxuJTI4Mi1jb3N4JTJCc2lueCUyOSU3RCU3RA==.png)
基本操作,
里的东西减去个1然后等价无穷小替换.![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyU1Q2xpbV8lN0JBKyU1Q3JpZ2h0YXJyb3crMSU3RGxuJTI4QSUyOSUyNiUzRCU1Q2xpbV8lN0JBKyU1Q3JpZ2h0YXJyb3crMSU3RGxuJTI4QS0xJTJCMSUyOSU1QyU1QyslMjYlM0QlNUNsaW1fJTdCJTI4QS0xJTI5KyU1Q3JpZ2h0YXJyb3crMCU3RGxuJTI4MSUyQkEtMSUyOSU1Q3NpbStBLTElNUNlbmQlN0JhbGlnbiUyQSU3RCs=.png)
变成了 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QiU1Q3NxcnQlNUIzJTVEJTdCMSUyQjJ4JTdELTElN0QlN0IxLWNvc3glMkJzaW54JTdEJTdEKw==.png)
我们知道,等价/高阶/低阶无穷小替换的本质其实是转化为幂函数的形态,所以为了在0处能够把sinx和cosx转化为幂函数,在加减法的环境下应用等价无穷小,就要用到麦克劳林公式(平时老师说不能在加减法情况下应用等价无穷小是因为精度不够,应用了麦克劳林公式就能确保精度,那么到底要展开到哪几项呢?因为分子分母的最大项精度要保持一致才能互相消去,比如这道题就要分母上下可以同时展开到
的一次幂就能互相消去。),其中
的展开是
而
的展开是
,所以
保留最大项目
,
保留1,而分子中的
也可以展开为
(这里用到了一个展开公式 (
当然你直接用麦克劳林也行,只不过用公式会更快一点),由于分母最大项是1次幂,所以保留
即可这样原式就变成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QjElMkIlNUNmcmFjJTdCMiU3RCU3QjMlN0R4LTElN0QlN0IxLTElMkJ4JTdEJTdEJTNEJTVDZnJhYyU3QjIlN0QlN0IzJTdEKw==.png)
例题三、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCZS1lJTVFJTdCY29zeCU3RCU3RCU3QiU1Q3NxcnQlN0IxJTJCeCU1RSU3QjIlN0QlN0QtMSU3RCU3RA==.png)
这道题需要用到一个小技巧,即
,则分母变为
,
在
的时候接近于e,由于非零因式直接带入原则所以可以去掉,剩下来的用以上两个例题的技巧可以轻松解决(事实上,类似
这样的式子有一个特点,那就是
型,这一类型的极限一般是提取一个公共因子使得成为
类型)。
例题四、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCeCU1RTIlMjhlJTVFJTVDZnJhYzF4LTElMjklN0QteA==.png)
由于是
所以可以用泰勒公式展开得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyVFNSU4RSU5RiVFNSVCQyU4RiUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlN0J4JTVFMiUyOCU1Q2ZyYWMxeCUyQiU1Q2ZyYWMxJTdCMnglNUUyJTdEJTJCJTVDZnJhYzElN0I2eCU1RTMlN0QlMkJvJTI4JTVDZnJhYzElN0J4JTVFMyU3RCUyOSUyOSU3RCU1QyU1QyslMjYlM0QlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEeCUyQiU1Q2ZyYWMxMiUyQm8lMjglNUNmcmFjMXglMjkteCU1QyU1QyslMjYlM0QlNUNmcmFjMTIrJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
例题五、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCbG4lMjgxJTJCZSU1RSU3QiU1Q2ZyYWMlN0IyJTdEJTdCeCU3RCU3RCUyOSU3RCU3QmxuJTI4MSUyQmUlNUUlN0IlNUNmcmFjJTdCMSU3RCU3QnglN0QlN0QlMjklN0QlN0Q=.png)
这里要注意
的时候分为
和
两类,
的时候
,先等价无穷小替换,得到
以及
原式变成
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUtJTdEJTdCZSU1RSU3QiU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU3RCU3RCUzRDA=.png)
而
的时候原式变成了
这个时候要求趋向于无穷的时候,虽然幂函数不适用于这种情况,但幂函数找最大项的本质是无穷大替换,所以我们可以用到速度的阶的理论,在x趋向于无穷或者0的时候,指数函数>>幂函数>>对数函数,这个式子里ln里的1完全可以被替换掉,因此原式就变成了
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUlMkIlN0QlN0IlNUNmcmFjJTdCbG5lJTVFJTdCJTVDZnJhYyU3QjIlN0QlN0J4JTdEJTdEJTdEJTdCbG5lJTVFJTdCJTVDZnJhYyU3QjElN0QlN0J4JTdEJTdEJTdEJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTVFJTJCJTdEJTdCJTVDZnJhYyU3QiU1Q2ZyYWMlN0IyJTdEJTdCeCU3RCU3RCU3QiU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU3RCU3RCUzRDI=.png)
同理,以下极限也可以应用这个理论,用一个因式替换全部:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlNUUlMkIlN0QlN0IlNUNzcXJ0JTdCeCU3RGxueCU3RCUzRDA=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCJTVDZnJhYyU3QnglNUUlN0I1JTdEJTdEJTdCZSU1RSU1Q2ZyYWMlN0J4JTdEJTdCMiU3RCU3RCU3RCUzRDA=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93Ky0lNUNpbmZ0eSU3RCU3QnglNUUlN0IyJTdEJTdEJTdCZSU1RXglN0QlM0Qw.png)
例题六、
遇到有
的式子,可以先想办法合并
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KyUyQiU1Q2luZnR5JTdEJTdCeC1sbiUyOGUlNUV4JTJCMSUyOSU3RCUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlN0JsbmUlNUV4LWxuJTI4ZSU1RXglMkIxJTI5JTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyslMkIlNUNpbmZ0eSU3RCU3QmxuJTVDZnJhYyU3QmUlNUV4JTdEJTdCZSU1RXglMkIxJTdEJTdEJTNEbG4xJTNEMA==.png)
例题七、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0JlJTVFJTdCeCU3RCUyQngrZSU1RSU3QnglN0QlN0QlN0JlJTVFJTdCeCU3RC0xJTdELSU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU1Q3JpZ2h0JTI5.png)
第一步先通分化为乘除法得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0JlJTVFJTdCeCU3RCUyQngrZSU1RSU3QnglN0QlN0QlN0JlJTVFJTdCeCU3RC0xJTdELSU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCU1Q3JpZ2h0JTI5JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCeGUlNUV4JTJCeCU1RTJlJTVFeC1lJTVFeCUyQjElN0QlN0J4JTI4ZSU1RXgtMSUyOSU3RCU1Q3JpZ2h0JTI5.png)
此时,分母无穷小替换得 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0J4ZSU1RXglMkJ4JTVFMmUlNUV4LWUlNUV4JTJCMSU3RCU3QnglMjhlJTVFeC0xJTI5JTdEJTVDcmlnaHQlMjklM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0J4ZSU1RXglMkJ4JTVFMmUlNUV4LWUlNUV4JTJCMSU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjk=.png)
此时,我们可以想到,分子的最大项为次数最小的项,通过对分子进行麦克劳林展开可以发现,
次数最小的项不是
就是
,当然由于
被消掉了,因此展开得到分子: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnhlJTVFeCUyQnglNUUyZSU1RXgtZSU1RXglMkIxJTdEJTdCeCU1RTIlN0QlNUNyaWdodCUyOSUyNiUzRCU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnglMjgxJTJCeCUyQm8lMjh4JTI5JTI5JTJCeCU1RTIlMjgxJTJCeCUyQm8lMjh4JTI5JTI5LSUyODElMkJ4JTJCJTVDZnJhYyU3QnglNUUyJTdEJTdCMiUyMSU3RCUyQm8lMjh4JTVFMiUyOSUyOSUyQjElN0QlN0J4JTVFMiU3RCU1Q3JpZ2h0JTI5JTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCeCUyQnglNUUyJTJCbyUyOHglNUUyJTI5JTJCeCU1RTIlMkJ4JTVFMyUyQm8lMjh4JTVFNCUyOS0xLXgtJTVDZnJhYyU3QnglNUUyJTdEJTdCMiUyMSU3RC1vJTI4eCU1RTIlMjklMkIxJTdEJTdCeCU1RTIlN0QlNUNyaWdodCUyOSU1QyU1QyUyNiUzRCU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNsZWZ0JTI4JTVDZnJhYyU3QnglNUUyJTJCeCU1RTItJTVDZnJhYyU3QnglNUUyJTdEMiUyQm8lMjh4JTVFNCUyOSU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDbGVmdCUyOCU1Q2ZyYWMlN0IlNUNmcmFjMzJ4JTVFMiU3RCU3QnglNUUyJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNmcmFjMzIlNUNlbmQlN0JhbGlnbiUyQSU3RA==.png)
注意,这里有些同学可能觉得分子化到
就够了,没必要化到
项,事实上,因为分母的最小项是
,所以分子务必也要化到
来确保精度。
例题八、
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCMSUyQiU1Q3Rhbit4JTdELSU1Q3NxcnQlN0IxJTJCJTVDc2luK3glN0QlN0QlN0J4KyU1Q2xuKyUyODElMkJ4JTI5LXglNUUlN0IyJTdEJTdE.png)
遇到
的时候要首先想到平方差公式来化简,如在这道题使用平方差公式化简后变成 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNiU1Q2xpbStfJTdCeCslNUNyaWdodGFycm93KzAlN0QrJTVDZnJhYyU3QiUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QtJTVDc3FydCU3QjElMkIlNUNzaW4reCU3RCUyOSUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QlMkIlNUNzcXJ0JTdCMSUyQiU1Q3Npbit4JTdEJTI5JTdEJTdCJTVDbGVmdCUyOHgrJTVDbG4rJTI4MSUyQnglMjkteCU1RSU3QjIlN0QlNUNyaWdodCUyOSUyOCU1Q3NxcnQlN0IxJTJCJTVDdGFuK3glN0QlMkIlNUNzcXJ0JTdCMSUyQiU1Q3Npbit4JTdEJTI5JTdEJTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCslNUNmcmFjJTdCJTVDdGFuK3gtJTVDc2luK3grJTdEJTdCJTI4eCslNUNsbislMjgxJTJCeCUyOS14JTVFJTdCMiU3RCUyOSU1Q2Nkb3QyJTdEJTVDJTVDJTI2JTNEJTVDbGltK18lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCslNUNmcmFjJTdCJTVDZnJhYyU3QnglNUUzJTdEJTdCMiU3RCUyQm8lMjh4JTVFMyUyOSslN0QlN0IlMjh4KyUyOHgtJTVDZnJhYyslN0J4JTVFMiU3RCsyJTJCbyUyOHglNUUyJTI5JTI5LXglNUUlN0IyJTdEJTI5JTVDY2RvdDIlN0QlNUMlNUMlMjYlM0QlNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEKyU1Q2ZyYWMlN0IlNUNmcmFjJTdCeCU1RTMlN0QlN0IyJTdEJTJCbyUyOHglNUUzJTI5KyU3RCU3QiUyOHglNUUyLSU1Q2ZyYWMrJTdCeCU1RTMrJTdEMiUyQm8lMjh4JTVFMyUyOS14JTVFMiUyOSU1Q2Nkb3QyJTdEJTVDJTVDJTI2JTNELSU1Q2ZyYWMxMiU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
例题九、化幂指函数为对数
这一类的题比较特殊,比如下面这道题会有同学将两个重要极限之一
带入求得答案1,事实上,这个答案是错误的,正确的答案是1
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNiU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0QlNUNmcmFjJTdCJTI4MSUyQiU1Q2ZyYWMrJTdCMSU3RCU3QnglN0QlMjklNUUlN0J4JTVFMiU3RCU3RCU3QmUlNUV4JTdEJTVDJTVDJTI2JTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyslMkIlNUNpbmZ0eSU3RCU1Q2ZyYWMlN0JlJTVFJTdCeCU1RTJsbiUyODElMkIlNUNmcmFjMXglMjklN0QlN0QlN0JlJTVFeCU3RCU1QyU1QyUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0RlJTVFJTdCeCU1RTJsbiUyODElMkIlNUNmcmFjMXglMjkteCU3RCU1QyU1QyUyNiUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crJTJCJTVDaW5mdHklN0RlJTVFJTdCeCU1RTIlNUIlNUNmcmFjMXgtJTVDZnJhYzEyJTVDZnJhYzElN0J4JTVFMiU3RCUyQm8lMjglNUNmcmFjMSU3QnglNUUyJTdEJTI5JTVELXglN0QlNUMlNUMlMjYlM0RlJTVFJTdCLSU1Q2ZyYWMxMiU3RCU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
设函数
在
的某领域内有定义,且
,求 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlMjgxJTJCMmYlMjh4JTI5JTI5JTVFJTdCJTVDZnJhYzElN0JzaW54JTdEJTdEJTdE.png)
用同样方法化为对数做。
例题十、
某些函数等价无穷小也比较难替换,可以用拉格朗日中值定理来等价无穷小替换
数列极限: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1JJTNEJTVDbGltXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU3Qm4lNUUyJTI4YXJjdGFuJTVDZnJhYzJuLWFyY3RhbiU1Q2ZyYWMyJTdCJTI4biUyQjElMjklN0QlMjklN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEJTI2YXJjdGFuJTVDZnJhYzJuLWFyY3RhbiU1Q2ZyYWMyJTdCbiUyQjElN0QlNUMlNUMlMjYlM0RmJTI4JTVDZnJhYzJuJTI5LWYlMjglNUNmcmFjMiU3Qm4lMkIxJTdEJTI5JTVDJTVDJTI2JTNEZiUyNyUyOCU1Q3hpJTI5JTI4JTVDZnJhYzJuLSU1Q2ZyYWMyJTdCbiUyQjElN0QlMjklNUMlNUMlMjYlM0QlNUNmcmFjMSU3QjElMkIlNUN4aSU1RTIlN0QlNUNjZG90JTVDZnJhYzIlN0JuJTI4biUyQjElMjklN0QlNUMlNUMlMjYlRTclOTQlQjElRTQlQkElOEUlNUNmcmFjMiU3Qm4lMkIxJTdEJTNDJTVDeGklM0MlNUNmcmFjMm4lRTYlOTUlODUlNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYzElN0IxJTJCJTVDeGklNUUyJTdEJTNEMSU3RCU1QyU1QyUyNiVFNSU4RSU5RiVFNSVCQyU4RiU1Q3NpbSU1Q2ZyYWMyJTdCbiUyOG4lMkIxJTI5JTdEJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
从而 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1JJTNEJTVDbGltXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU3Qm4lNUUyJTVDY2RvdCU1Q2ZyYWMyJTdCbiUyOG4lMkIxJTI5JTdEJTdEJTNEMg==.png)
例题十、综合应用
这一类较为繁琐,可能同时用到变限积分、泰勒、等价无穷小、洛必达,一般做题的顺序是先等价无穷小、再泰勒、最后用洛必达,中间化简的过程中遇到极限为常数的因子直接带常数。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjKyU3QiU1Q2ludF8wJTVFeHQlNUUyc2luJTI4eCU1RTMtdCU1RTMlMjlkdCU3RCU3QiUyOGUlNUUlN0J0YW54JTdELWUlNUV4JTI5eCU1RTMlN0Q=.png)
首先令
化简变限积分得到
提出
得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QmUlNUV4JTI4ZSU1RSU3QnRhbngteCU3RC0xJTI5eCU1RTMlN0QlN0Q=.png)
使用等价无穷小替换
并使用常数替换极限为常数的因子
得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QiUyOHRhbngteCUyOXglNUUzJTdEJTdE.png)
使用泰勒公式得到
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCJTVDaW50XzAlNUUlN0J4JTVFMyU3RHNpbnVkdSU3RCU3QiUyOCU1Q2ZyYWMxM3glNUUzJTJCbyUyOHglNUUzJTI5JTI5eCU1RTMlN0QlN0QrJTNEJTVDZnJhYzEzJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTdCJTVDZnJhYyU3QiU1Q2ludF8wJTVFJTdCeCU1RTMlN0RzaW51ZHUlN0QlN0IlNUNmcmFjMTN4JTVFNiUyQm8lMjh4JTVFNiUyOSU3RCU3RA==.png)
最后使用洛必达法则
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMTMlNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlN0IlNUNmcmFjJTdCM3glNUUyc2lueCU1RTMlN0QlN0IyeCU1RTUlMkJvJTI4eCU1RTUlMjklN0QlN0QlM0QlNUNmcmFjMTI=.png)
下面附上一些常用泰勒展开和等价无穷小,考试的时候务必要记住:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmNhc2VzJTdEKyUyODElMjkrJTVDYmVnaW4lN0JjYXNlcyU3RCtzaW54JTNEeC0lNUNmcmFjJTdCeCU1RTMlN0QlN0I2JTdEJTJCbyUyOHglNUUzJTI5JTVDKyVFMiU5MSVBMCU1QyU1QythcmNzaW54JTNEeCUyQiU1Q2ZyYWMlN0J4JTVFMyU3RCU3QjYlN0QlMkJvJTI4eCU1RTMlMjkrJTVDZW5kJTdCY2FzZXMlN0QlNUMlNUMrJTI4MiUyOSslNUNiZWdpbiU3QmNhc2VzJTdEK3RhbnglM0R4JTJCJTVDZnJhYyU3QnglNUUzJTdEJTdCMyU3RCUyQm8lMjh4JTVFMyUyOSU1QyslRTIlOTElQTElNUMlNUMrYXJjdGFueCUzRHgtJTVDZnJhYyU3QnglNUUzJTdEJTdCMyU3RCUyQm8lMjh4JTVFMyUyOSslNUNlbmQlN0JjYXNlcyU3RCU1QyU1QyslMjgzJTI5KyU1Q2JlZ2luJTdCY2FzZXMlN0QrZSU1RXglM0QxJTJCeCUyQiU1Q2ZyYWMlN0J4JTVFMiU3RCU3QjIlMjElN0QlMkIlNUNmcmFjJTdCeCU1RTMlN0QlN0IzJTIxJTdEJTJCbyUyOHglNUUzJTI5JTVDJTVDK2xuJTI4MSUyQnglMjklM0R4LSU1Q2ZyYWMlN0J4JTVFMiU3RCU3QjIlN0QlMkIlNUNmcmFjJTdCeCU1RTMlN0QlN0IzJTdEJTJCbyUyOHglNUUzJTI5KyU1Q2VuZCU3QmNhc2VzJTdEJTVDJTVDKyUyODQlMjkrJTVDYmVnaW4lN0JjYXNlcyU3RCtjb3N4JTNEMS0lNUNmcmFjJTdCeCU1RTIlN0QlN0IyJTdEJTJCJTVDZnJhYyU3QnglNUU0JTdEJTdCNCUyMSU3RCUyQm8lMjh4JTVFNCUyOSU1QyslRTIlOTElQTIlNUMlNUMrJTI4MSUyQnglMjklNUUlN0IlNUNhbHBoYSU3RCUzRDElMkIlNUNhbHBoYSt4JTJCJTVDZnJhYyU3QiU1Q2FscGhhJTI4JTVDYWxwaGEtMSUyOSU3RCU3QjIlN0R4JTVFJTdCMiU3RCUyQm8lMjh4JTVFJTdCMiU3RCUyOSVFMiU5MSVBMyslNUNlbmQlN0JjYXNlcyU3RCU1QyU1QysrJTI4NSUyOSthJTVFeCUzRDElMkJsbmF4JTJCJTVDZnJhYyslN0JsbiU1RTJhJTdENHglNUUyJTJCJTVDZnJhYyslN0JsbiU1RTNhJTdENit4JTVFMyUyQm8lMjh4JTVFMyUyOSVFMiU5MSVBNCU1Q2VuZCU3QmNhc2VzJTdE.png)
其中 ①式减②式可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD10YW54LXNpbnglNUNzaW0lNUNmcmFjJTdCeCU1RTMlN0QlN0IyJTdE.png)
1减③式可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lMjgxLWNvc3glMjklNUNzaW0rJTVDZnJhYyU3QnglNUUyJTdEJTdCMiU3RA==.png)
④式减1可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lMjgxJTJCeCUyOSU1RSU1Q2FscGhhLTErJTVDc2ltJTVDYWxwaGEreA==.png)
⑤式减1,可以得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1hJTVFeC0xJTVDc2ltK2xuYXg=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1zaW54JTVDc2ltK2FyY3NpbnglNUNzaW0rdGFueCU1Q3NpbSthcmN0YW54JTVDc2ltK2UlNUV4LTElNUNzaW0rbG4lMjgxJTJCeCUyOSU1Q3NpbSt4.png)
还有一些要记住 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14JTVFMm8lMjglNUNmcmFjJTdCMSU3RCU3QnglNUUzJTdEJTI5JTNEbyUyOCU1Q2ZyYWMlN0IxJTdEJTdCeCU3RCUyOQ==.png)
2.变限积分求极限
一句话,变限积分求极限,一般用洛必达法则,既然应用了洛必达法则,那么变限积分的求导一定又是过不去的一道坎。这个我打算放到求导那章整理。
此外,某些变限积分的极限化简可以用泰勒公式来简化.
例1 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTdEc2ludGR0JTdEJTdCeCU1RTIlN0Q=.png)
这道题常规做法是用洛必达化为 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCc2lueCU3RCU3QjJ4JTdEJTNEJTVDZnJhYzEy.png)
实际上用泰勒展开也可以做
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTdEc2lueCU3RCU3QnglNUUyJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDZnJhYyU3QiU1Q2ludF8lN0IwJTdEJTVFJTdCeCU3RCU3QiU1QnQlMkJvJTI4dCUyOSU3RCU1RCU3RCU3QnglNUUyJTdEJTNEJTVDbGltXyU3QngrJTVDcmlnaHRhcnJvdyswJTdEJTVDZnJhYyU3QiU1Q2ZyYWMlN0J4JTVFMiU3RDIlMkJvJTI4eCU1RTIlMjklN0QlN0J4JTVFMiU3RCUzRCU1Q2ZyYWMxMg==.png)
例2 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTVFJTdCMiU3RCU3RCslNUNhcmNzaW4rdCtkK3QlN0QlN0J4JTVFNCU3RA==.png)
原式
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCeCslNUNyaWdodGFycm93KzAlN0QlNUNmcmFjJTdCJTVDaW50XyU3QjAlN0QlNUUlN0J4JTVFJTdCMiU3RCU3RCUyOHQlMkJvJTI4dCUyOSUyOStkK3QlN0QlN0J4JTVFNCU3RCUzRCU1Q2xpbV8lN0J4KyU1Q3JpZ2h0YXJyb3crMCU3RCU1Q2ZyYWMlN0IlNUNmcmFjJTdCeCU1RTQlN0QyJTJCbyUyOHglNUU0JTI5JTdEJTdCeCU1RTQlN0QlM0QlNUNmcmFjMTI=.png)
例3 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyUyQiU1Q2luZnR5JTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMit4JTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkJlJTVFJTdCdCU3RCU3RCtkK3Q=.png)
这道题分母为1,不能用洛必达,又是趋于无穷不能用泰勒,只能用夹逼准则了。
当
时
趋于0且单调递减
故当
时有 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCJTVDc3FydCU3QjJ4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0IyeCU3RCU3RCUzQyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCdCU3RCU3RCUzQyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCeCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCeCU3RCU3RA==.png)
由于
可以被当作常数
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0IyeCU3RCU3RCU3QjElMkIlNUNtYXRocm0lN0JlJTdEJTVFJTdCMnglN0QlN0QlNUNtYXRocm0lN0JkJTdEK3QlM0QlNUNmcmFjJTdCJTVDc3FydCU3QjJ4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0IyeCU3RCU3RCslNUNpbnRfJTdCeCU3RCU1RSU3QjIreCU3RCslNUNtYXRocm0lN0JkJTdEK3QlM0QlNUNmcmFjJTdCMngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QjJ4JTdEJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdEJTVDbWF0aHJtJTdCZCU3RCt0JTNEJTVDZnJhYyU3QiU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMnglN0QrJTVDbWF0aHJtJTdCZCU3RCt0JTNEJTVDZnJhYyU3QngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QnglN0QlN0Q=.png)
故
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCMngrJTVDc3FydCU3QnglN0QlN0QlN0IxJTJCJTVDbWF0aHJtJTdCZSU3RCU1RSU3QjJ4JTdEJTdEJTNDJTVDaW50XyU3QnglN0QlNUUlN0IyK3glN0QrJTVDZnJhYyU3QiU1Q3NxcnQlN0J0JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J0JTdEJTdEKyU1Q21hdGhybSU3QmQlN0QrdCUzQyU1Q2ZyYWMlN0J4KyU1Q3NxcnQlN0J4JTdEJTdEJTdCMSUyQiU1Q21hdGhybSU3QmUlN0QlNUUlN0J4JTdEJTdE.png)
由于上式左右两端在
时候的极限都为0
故由夹逼准则
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3QngrJTVDcmlnaHRhcnJvdyUyQiU1Q2luZnR5JTdEKyU1Q2ludF8lN0J4JTdEJTVFJTdCMit4JTdEKyU1Q2ZyYWMlN0IlNUNzcXJ0JTdCdCU3RCU3RCU3QjElMkJlJTVFJTdCdCU3RCU3RCtkK3QlM0Qw.png)
3.数列求极限
数列求极限的方法主要用到了夹逼准则、单调有界准则、化为定积分求解
例题1:
证明:(1) ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMSU3QiU1Q3NxcnQlN0IybiUyQjElN0QlN0QlM0MlNUNzcXJ0JTdCMm4lMkIxJTdELSU1Q3NxcnQlN0Iybi0xJTdEJTNDJTVDZnJhYzElN0IlNUNzcXJ0JTdCMm4tMSU3RCU3RA==.png)
(2)设
,则数列极限存在
解:
(1)遇到有根式的分母,首先想到的是分子分母有理化,不等式左右两侧分母无法进一步有理化,只能分式中间开始有理化,同时乘以
,使用平方差公式得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMSU3QiU1Q3NxcnQlN0IybiUyQjElN0QlN0QlM0MlNUNmcmFjKyU3QjIlN0QlN0IlNUNzcXJ0JTdCMm4lMkIxJTdEJTJCJTVDc3FydCU3QjJuLTElN0QlN0QlM0MlNUNmcmFjMSU3QiU1Q3NxcnQlN0Iybi0xJTdEJTdE.png)
变形得到:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjMiU3QjIlNUNzcXJ0JTdCMm4lMkIxJTdEJTdEJTNDJTVDZnJhYyslN0IyJTdEJTdCJTVDc3FydCU3QjJuJTJCMSU3RCUyQiU1Q3NxcnQlN0Iybi0xJTdEJTdEJTNDJTVDZnJhYzIlN0IyJTVDc3FydCU3QjJuLTElN0QlN0Q=.png)
上式很容易看出成立。
(2)数列极限,要用到单调有界准则,至于怎么用,第一问给了提示。首先判断数列的单调性,让 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14XyU3Qm4lMkIxJTdELXhfbiUzRCU1Q2ZyYWMxJTdCJTVDc3FydCU3QjJuJTJCMSU3RCU3RC0lNUNmcmFjMSU3QiU1Q3NxcnQlN0Iybi0xJTdEJTdEJTJCJTVDc3FydCU3QjJuLTElN0QtJTVDc3FydCU3QjJuJTJCMSU3RCUzQzA=.png)
故数列单调递减,这样只要证明数列大于某个数就行了,由第一问的结果可以将数列放缩为:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEKyUyNnhfbiUzRS0xJTJCJTVDc3FydDMtJTVDc3FydDMlMkIlNUNzcXJ0NS0uLi4tJTVDc3FydCU3QjJuLTElN0QlMkIlNUNzcXJ0JTdCMm4lMkIxJTdELSU1Q3NxcnQlN0Iybi0xJTdEJTVDJTVDJTI2JTNEJTVDc3FydCU3QjJuJTJCMSU3RC0lNUNzcXJ0JTdCMm4tMSU3RC0xJTVDJTVDJTI2JTNEJTVDZnJhYyslN0IyJTdEJTdCJTVDc3FydCU3QjJuJTJCMSU3RCUyQiU1Q3NxcnQlN0Iybi0xJTdEJTdELTElM0UtMSU1Q2VuZCU3QmFsaWduJTJBJTdEKw==.png)
故
有界,则
有极限。
例题2:
设数列
满足:
,证明
收敛,并求 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uJTdE.png)
解:可以用拉格朗日证明数列的单调性
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCeF8lN0JuJTJCMSU3RCU3RCUzRCU1Q2ZyYWMlN0JlJTVFJTdCeF9uJTdELTElN0QlN0J4X24lN0QlM0QlNUNmcmFjJTdCZSU1RSU3QnhfbiU3RC1lJTVFMCU3RCU3Qnhfbi0wJTdEJTNEZSU1RSU1Q3hpJTI4MCUzQyU1Q3hpJTNDeF9uJTI5JTVDJTVDK2UlNUUlN0J4X24lMkIxJTdELWUlNUUlN0J4X24lN0QlM0RlJTVFJTVDeGktZSU1RSU3QnhfbiU3RCUzQzAr.png)
由于
单调,故
单调递减
由于
的具体公式没有给出,而仅仅只给出了
,所以采用数学归纳法。
当
时, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14XzElM0Uw.png)
假设
时 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X2slM0Uw.png)
当
时 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCeF9rJTJCMSU3RCUzRCU1Q2ZyYWMrJTdCZSU1RSU3QnhfayU3RC0xJTdEJTdCeF9rJTdEJTNFMQ==.png)
则 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X2slMkIxJTNFMA==.png)
故对所有
都有 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD14X24lM0Uw.png)
由于
单调有界,故有极限。
这个时候,不妨设极限为一个常数
设 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uJTdEJTNEQQ==.png)
则 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF8lN0JuJTJCMSU3RCU3RCUzREE=.png)
故由 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCeF9uZSU1RSU3QnhfJTdCbiUyQjElN0QlN0QlM0RlJTVFJTdCeF9uJTdELTElN0Q=.png)
得到 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1BZSU1RUElM0RlJTVFQS0xKw==.png)
求得
,故极限为0。
例题3:
求极限 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTI4JTVDZnJhYyslN0JhcmN0YW4lNUNmcmFjMW4lN0QlN0JuJTJCMSU3RCUyQiU1Q2ZyYWMrJTdCYXJjdGFuJTVDZnJhYzJuJTdEJTdCbiUyQiU1Q2ZyYWMxMiU3RCUyQi4uLiUyQiU1Q2ZyYWMrJTdCYXJjdGFuJTVDZnJhYyU3Qm4lN0RuJTdEJTdCbiUyQiU1Q2ZyYWMxbiU3RCUyOSU3RA==.png)
这个要用到夹逼准则,而这种无穷数列恰好又能化为定积分。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYysxJTdCbiUyQjElN0QlMjglN0JhcmN0YW4lNUNmcmFjMW4lN0QlMkJhcmN0YW4lNUNmcmFjMm4lMkIuLi4lMkJhcmN0YW4lNUNmcmFjJTdCbiU3RG4lMjklN0QlNUNsZXElRTUlOEUlOUYlRTUlQkMlOEYlNUNsZXElNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYysxbiUyOCU3QmFyY3RhbiU1Q2ZyYWMxbiU3RCUyQmFyY3RhbiU1Q2ZyYWMybiUyQi4uLiUyQmFyY3RhbiU1Q2ZyYWMlN0JuJTdEbiUyOSU3RA==.png)
变形
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW1fJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEJTdCJTVDZnJhYytuJTdCbiUyQjElN0QlNUN0aW1lcyU1Q2ZyYWMxbiUyOCU3QmFyY3RhbiU1Q2ZyYWMxbiU3RCUyQmFyY3RhbiU1Q2ZyYWMybiUyQi4uLiUyQmFyY3RhbiU1Q2ZyYWMlN0JuJTdEbiUyOSU3RCU1Q2xlcSVFNSU4RSU5RiVFNSVCQyU4RiU1Q2xlcSU1Q2xpbV8lN0JuKyU1Q3JpZ2h0YXJyb3crJTVDaW5mdHklN0QlN0IlNUNmcmFjKzFuJTI4JTdCYXJjdGFuJTVDZnJhYzFuJTdEJTJCYXJjdGFuJTVDZnJhYzJuJTJCLi4uJTJCYXJjdGFuJTVDZnJhYyU3Qm4lN0RuJTI5JTdE.png)
转化为积分 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNpbnRfJTdCMCU3RCU1RSU3QjElN0RhcmN0YW54ZHglNUNsZXElRTUlOEUlOUYlRTUlQkMlOEYlNUNsZXElNUNpbnRfJTdCMCU3RCU1RSU3QjElN0RhcmN0YW54ZHg=.png)
从而得到极限为
即 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTVDcGk0LSU1Q2ZyYWMxMmxuMg==.png)
例题4:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCMSU3RCU3QiU1Q3NxcnQlN0JuJTVFJTdCMiU3RCUyQm4lN0QlN0QlMkIlNUNmcmFjJTdCMSU3RCU3QiU1Q3NxcnQlN0JuJTVFJTdCMiU3RCUyQjIrbiU3RCU3RCUyQiU1Q2Nkb3RzJTJCJTVDZnJhYyU3QjElN0QlN0IlNUNzcXJ0JTdCbiU1RSU3QjIlN0QlMkJuJTVFJTdCMiU3RCU3RCU3RCU1Q3JpZ2h0JTI5.png)
这题一开始想到夹逼准则,但是实际上不太行,正确思路是化为定积分
原式= ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2ZyYWMxbiU1QiU1Q2ZyYWMxJTdCJTVDc3FydCU3QjElMkIlNUNmcmFjMW4lN0QlN0QlMkIlNUNmcmFjMSU3QiU1Q3NxcnQlN0IxJTJCJTVDZnJhYzJuJTdEJTdEJTJCLi4uJTJCJTVDZnJhYzElN0IlNUNzcXJ0JTdCMSUyQiU1Q2ZyYWMlN0JuJTdEbiU3RCU3RCU1RCUzRCU1Q3N1bV8lN0JpJTNEMSU3RCU1RSU3Qm4lN0QlN0IlNUNmcmFjMW4lNUNmcmFjMSU3QiU1Q3NxcnQlN0IxJTJCJTVDZnJhYyU3QmklN0QlN0JuJTdEJTdEJTdEJTdEJTNEJTVDaW50XyU3QjAlN0QlNUUlN0IxJTdEJTVDZnJhYzElN0IlNUNzcXJ0JTdCMSUyQnglN0QlN0RkeCUzRDIlNUNzcXJ0Mi0y.png)
例题5:
当
时, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNmcmFjJTdCeCU3RCU3QjElMkJ4JTdEJTNDJTVDbG4rJTI4MSUyQnglMjklM0N4.png)
求极限
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RCU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjkrJTVDY2RvdHMlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOQ==.png)
我们知道,取对数可以解决的问题有两种,一种是
的时候可以取对数,还有一种则是本例,把乘除化为加减
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTJBJTdEJTI2JTVDbGltK18lN0JuKyU1Q3JpZ2h0YXJyb3crJTVDaW5mdHklN0QlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5KyU1Q2Nkb3RzJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0QlNUNsaW0rXyU3Qm4rJTVDcmlnaHRhcnJvdyslNUNpbmZ0eSU3RGUlNUUlN0JsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjkrJTVDY2RvdHMlNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSU3RCU1QyU1QyUyNiUzRCU1Q2xpbStfJTdCbislNUNyaWdodGFycm93KyU1Q2luZnR5JTdEZSU1RSU3QmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMSU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklMkJsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTJCJTVDY2RvdHMlMkJsbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3Qm4lN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTVDZW5kJTdCYWxpZ24lMkElN0Q=.png)
由于 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1sbiU1Q2xlZnQlMjgxJTJCJTVDZnJhYyU3QjElN0QlN0JuJTVFJTdCMiU3RCU3RCU1Q3JpZ2h0JTI5JTJCbG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IyJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUyQiU1Q2Nkb3RzJTJCbG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUzQyU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTJCJTVDY2RvdHMlMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTNEJTVDZnJhYyU3QiU1Q2ZyYWMlN0JuJTI4biUyQjElMjklN0QyJTdEJTdCbiU1RTIlN0QlM0QlNUNmcmFjMTIlMkIlNUNmcmFjMSU3QjJuJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTdEJTI2bG4lNUNsZWZ0JTI4MSUyQiU1Q2ZyYWMlN0IxJTdEJTdCbiU1RSU3QjIlN0QlN0QlNUNyaWdodCUyOSUyQmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCMiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklMkIlNUNjZG90cyUyQmxuJTVDbGVmdCUyODElMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUlN0IyJTdEJTdEJTVDcmlnaHQlMjklNUMlNUMlMjYlM0UlNUNmcmFjMSU3Qm4lNUUyJTJCMSU3RCUyQiU1Q2ZyYWMlN0IyJTdEJTdCbiU1RTIlMkIyJTdEJTJCJTVDY2RvdHMlMkIlNUNmcmFjJTdCbiU3RCU3Qm4lNUUyJTJCbiU3RCU1QyU1QyUyNiUzRSU1Q2ZyYWMxJTdCbiU1RTIlMkJuJTdEJTJCJTVDZnJhYyU3QjIlN0QlN0JuJTVFMiUyQm4lN0QlMkIlNUNjZG90cyUyQiU1Q2ZyYWMlN0JuJTdEJTdCbiU1RTIlMkJuJTdEJTVDJTVDJTI2JTNEJTVDZnJhYyU3QiU1Q2ZyYWMlN0JuJTI4biUyQjElMjklN0QyJTdEJTdCbiU1RTIlMkJuJTdEJTVDJTVDJTI2JTNEJTVDZnJhYzEyJTVDZW5kJTdCYWxpZ24lN0Q=.png)
故由夹逼准则得原式= ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1lJTVFJTdCJTVDZnJhYzEyJTdE.png)
方法一:等价无穷小的转化 在乘除中使用
方法二:极限的四则运算法则
方法三:洛必达法则
方法四:泰勒公式
方法五:两多项式相除
6:无穷小与有界函数的处理方法
7:数列极限中等比等差数列公式的应用
8:数列极限中各项的拆分相加
9:利用Xn 与Xn+1极限相同求极限
10:夹逼准则
11:两个重要极限的应用
12:当趋于无穷大时,不同函数趋于无穷的速度是不一样的。
13:换元法
14:利用定积分求极限
15:重要的高阶无穷小
