向量 - 向量點積(結果為標量)、叉乘


向量是由n個實數組成的一個n行1列(n*1)或一個1行n列(1*n)的有序數組;

向量的點乘,也叫向量的內積、數量積,對兩個向量執行點乘運算,就是對這兩個向量對應位一一相乘之后求和的操作,點乘的結果是一個標量。

點乘公式


對於向量a和向量b:

                                                                              

a和b的點積公式為:

要求一維向量a和向量b的行列數相同。

點乘幾何意義

點乘的幾何意義是可以用來表征或計算兩個向量之間的夾角,以及在b向量在a向量方向上的投影,有公式:

推導過程如下,首先看一下向量組成:

 

定義向量:

根據三角形余弦定理有:

根據關系c=a-b(a、b、c均為向量)有:

即:

向量a,b的長度都是可以計算的已知量,從而有a和b間的夾角θ:

根據這個公式就可以計算向量a和向量b之間的夾角。從而就可以進一步判斷這兩個向量是否是同一方向,是否正交(也就是垂直)等方向關系,具體對應關系為:


     a·b>0    方向基本相同,夾角在0°到90°之間

     a·b=0    正交,相互垂直  

     a·b<0    方向基本相反,夾角在90°到180°之間 

叉乘公式

兩個向量的叉乘,又叫向量積、外積、叉積,叉乘的運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量組成的坐標平面垂直。

對於向量a和向量b:

a和b的叉乘公式為:

其中:

根據i、j、k間關系,有:


叉乘幾何意義

在三維幾何中,向量a和向量b的叉乘結果是一個向量,更為熟知的叫法是法向量,該向量垂直於a和b向量構成的平面。

在3D圖像學中,叉乘的概念非常有用,可以通過兩個向量的叉乘,生成第三個垂直於a,b的法向量,從而構建X、Y、Z坐標系。如下圖所示: 

在二維空間中,叉乘還有另外一個幾何意義就是:aXb等於由向量a和向量b構成的平行四邊形的面積。
--------------------- 
原文:https://blog.csdn.net/dcrmg/article/details/52416832

 

Ochiai系數

這個系數在生物學中也叫Ochiai系數,或Ochiai-Barkman系數:
          
這里A和B是集合,n(A)是A的元素個數。如果集合由位元向量所代表,那么可看到Ochiai系數跟余弦相似性是等同的。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM