C#使用cplex求解簡單線性規划問題(Cplex系列-教程二)


若還未在項目中添加cplex的引用,可以參閱上一篇文章。本文主要介紹利用C#求解線性規划的步驟,對線性規划模型進行數據填充的兩種方法,以及一些cplex函數的功能和用法。包括以下幾個步驟:

描述

先花時間理清問題。明確決策變量及其取值范圍,目標函數,約束條件,已知的數據。后面代碼的編寫也是沿着這個思路,先理清問題后面的工作會更有效率。以如下問題為例:

先建立數學模型:
令:i產品在j機器上加工的小時數為xij
決策變量:x11,x12,x21,x22
目標函數:Min(z)=50x11+70x12+50x21+70x22
約束條件:
x12+x22<=112,
x11+x21<=104,
20x11+40x12=3200,
10x21+30x22=2000,
xij>=0(i=1,2;j=1,2)

模型

創建模型對象

//實例化一個空模型
Cplex cplexModel = new Cplex();

方法1:使用行方法填充模型

//生成決策變量並約束范圍
 
 INumVar[][] deVar=new INumVar[1][];//交叉數組用於存儲決策變量
 double[]lb= {0.0, 0.0, 0.0,0.0}; //lb(low bound)與ub定義決策變量的上下界
 double[]ub={double.MaxValue,double.MaxValue,double.MaxValue,double.MaxValue};
 string []deVarName={"x11","x12","x21","x22"};//決策變量名
 INumVar[]x=cplexModel.NumVarArray(4,lb,ub,deVarName);//生成決策變量
 deVar[0]=x;

//生成目標函數

 double[]objCoef={50.0,70.0,50.0,70.0};//目標函數系數(object coefficient)
 cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef));//數量相乘(scalar product)
 
//生成約束條件
IRange[][] rng = new IRange[1][];//存放約束
rng[0] = new IRange[4];
//AddLe為<=,AddGe為>=,AddEq為=
rng[0][0] = cplexModel.AddLe(
cplexModel.Sum(cplexModel.Prod(1.0, x[3]),
               cplexModel.Prod( 1.0, x[1])), 112.0, "c1");
rng[0][1] = cplexModel.AddLe(
cplexModel.Sum(cplexModel.Prod(1.0, x[0]),
               cplexModel.Prod( 1.0, x[2])), 104.0, "c2");
rng[0][2] = cplexModel.AddEq(               
cplexModel.Sum(cplexModel.Prod(20.0, x[0]),
               cplexModel.Prod( 40.0, x[1])), 3200.0, "c3");
rng[0][3] = cplexModel.AddEq(               
cplexModel.Sum(cplexModel.Prod(10.0, x[2]),
               cplexModel.Prod( 30.0, x[3])), 2000.0, "c4");

方法2:使用列方法填充模型  

 IObjective obj =cplexModel.AddMinimize();//目標函數,此時是空的
 //約束
 IRange[][] rng=new IRange[1][];
 rng[0]=new IRange[4];
 rng[0][0] = cplexModel.AddRange(-double.MaxValue, 112.0, "c1");//<=112
 rng[0][1] = cplexModel.AddRange(-double.MaxValue, 104.0, "c2");
 rng[0][2] = cplexModel.AddRange(3200.0,3200.0, "c3");//=3200
 rng[0][3] = cplexModel.AddRange(2000.0,2000.0, "c4");
 //簡化引用的書寫
 IRange r0 = rng[0][0];
 IRange r1 = rng[0][1];
 IRange r2 = rng[0][2];
 IRange r3 = rng[0][3];
 //決策變量
 INumVar[][]deVar=new INumVar[1][];
 deVar[0]=new INumVar[4];//4個決策變量
 deVar[0][0] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And(
                               cplexModel.Column(r1,  1.0).And(
                               cplexModel.Column(r2,   20.0))),
                               0.0, double.MaxValue, "x11");//最后一行為取值和名稱
deVar[0][1] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And(
                               cplexModel.Column(r0,  1.0).And(
                               cplexModel.Column(r2,   40.0))),
                               0.0, double.MaxValue, "x12");  
deVar[0][2] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And(
                               cplexModel.Column(r1,  1.0).And(
                               cplexModel.Column(r3,   10.0))),
                               0.0, double.MaxValue, "x21"); 
deVar[0][3] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And(
                               cplexModel.Column(r0,  1.0).And(
                               cplexModel.Column(r3,   30.0))),
                               0.0, double.MaxValue, "x22");                                                                                          

求解模型並展示  

if (cplexModel.Solve())
            {
                int nvars = cplexModel.GetValues(deVar[0]).Length;
                for (int j = 0; j < nvars; ++j)
                {
                    cplexModel.Output().WriteLine("Variable   " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] );
                }
            }

導出模型  

cplexModel.ExportModel("lpex1.lp");

文件在“你的項目\bin\debug”顯示如下圖:

  

完整代碼和求解結果

using ILOG.Concert;
using ILOG.CPLEX;
using System;

public class LPex1
{ 
    public static void Main(string[] args)
    {    
        try
        {
            //實例化一個空模型
            Cplex cplexModel = new Cplex();
            //生成決策變量並賦值
            INumVar[][] deVar = new INumVar[1][];
            double[] lb = { 0.0, 0.0, 0.0, 0.0 };
            double[] ub = { double.MaxValue, double.MaxValue, double.MaxValue, double.MaxValue };
            string[] deVarName = { "x11", "x12", "x21", "x22" };
            INumVar[] x = cplexModel.NumVarArray(4, lb, ub, deVarName);
            deVar[0] = x;
            //目標函數
            double[] objCoef = { 50.0, 70.0, 50.0, 70.0 };//目標函數系數(object coefficient)
            cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef));
            //約束條件
            IRange[][] rng = new IRange[1][];
            rng[0] = new IRange[4];
            rng[0][0] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[3]),
                                                       cplexModel.Prod(1.0, x[1])), 112, "c1");
            rng[0][1] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[0]),
                                                         cplexModel.Prod(1.0, x[2])), 104.0, "c2");
            rng[0][2] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(20.0, x[0]),
                                                         cplexModel.Prod(40.0, x[1])), 3200.0, "c3");
            rng[0][3] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(10.0, x[2]),
                                                        cplexModel.Prod(30.0, x[3])), 2000.0, "c4");
            cplexModel.ExportModel("lpex1.lp");

            if (cplexModel.Solve())
            {
                int nvars = cplexModel.GetValues(deVar[0]).Length;
                for (int j = 0; j < nvars; ++j)
                {
                    cplexModel.Output().WriteLine("Variable   " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] );
                }
            }
            cplexModel.End();
        }
        catch (ILOG.Concert.Exception e)
        {
            System.Console.WriteLine("Concert exception '" + e + "' caught");
        }
        Console.ReadKey();
    }
}

決策變量較多時,請使用循環。本文重在入門和對cplex庫中一些概念的理解。  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM