若還未在項目中添加cplex的引用,可以參閱上一篇文章。本文主要介紹利用C#求解線性規划的步驟,對線性規划模型進行數據填充的兩種方法,以及一些cplex函數的功能和用法。包括以下幾個步驟:
描述
先花時間理清問題。明確決策變量及其取值范圍,目標函數,約束條件,已知的數據。后面代碼的編寫也是沿着這個思路,先理清問題后面的工作會更有效率。以如下問題為例:
先建立數學模型:
令:i產品在j機器上加工的小時數為xij
決策變量:x11,x12,x21,x22
目標函數:Min(z)=50x11+70x12+50x21+70x22
約束條件:
x12+x22<=112,
x11+x21<=104,
20x11+40x12=3200,
10x21+30x22=2000,
xij>=0(i=1,2;j=1,2)
模型
創建模型對象
//實例化一個空模型 Cplex cplexModel = new Cplex();
方法1:使用行方法填充模型
//生成決策變量並約束范圍 INumVar[][] deVar=new INumVar[1][];//交叉數組用於存儲決策變量 double[]lb= {0.0, 0.0, 0.0,0.0}; //lb(low bound)與ub定義決策變量的上下界 double[]ub={double.MaxValue,double.MaxValue,double.MaxValue,double.MaxValue}; string []deVarName={"x11","x12","x21","x22"};//決策變量名 INumVar[]x=cplexModel.NumVarArray(4,lb,ub,deVarName);//生成決策變量 deVar[0]=x; //生成目標函數 double[]objCoef={50.0,70.0,50.0,70.0};//目標函數系數(object coefficient) cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef));//數量相乘(scalar product) //生成約束條件 IRange[][] rng = new IRange[1][];//存放約束 rng[0] = new IRange[4]; //AddLe為<=,AddGe為>=,AddEq為= rng[0][0] = cplexModel.AddLe( cplexModel.Sum(cplexModel.Prod(1.0, x[3]), cplexModel.Prod( 1.0, x[1])), 112.0, "c1"); rng[0][1] = cplexModel.AddLe( cplexModel.Sum(cplexModel.Prod(1.0, x[0]), cplexModel.Prod( 1.0, x[2])), 104.0, "c2"); rng[0][2] = cplexModel.AddEq( cplexModel.Sum(cplexModel.Prod(20.0, x[0]), cplexModel.Prod( 40.0, x[1])), 3200.0, "c3"); rng[0][3] = cplexModel.AddEq( cplexModel.Sum(cplexModel.Prod(10.0, x[2]), cplexModel.Prod( 30.0, x[3])), 2000.0, "c4");
方法2:使用列方法填充模型
IObjective obj =cplexModel.AddMinimize();//目標函數,此時是空的 //約束 IRange[][] rng=new IRange[1][]; rng[0]=new IRange[4]; rng[0][0] = cplexModel.AddRange(-double.MaxValue, 112.0, "c1");//<=112 rng[0][1] = cplexModel.AddRange(-double.MaxValue, 104.0, "c2"); rng[0][2] = cplexModel.AddRange(3200.0,3200.0, "c3");//=3200 rng[0][3] = cplexModel.AddRange(2000.0,2000.0, "c4"); //簡化引用的書寫 IRange r0 = rng[0][0]; IRange r1 = rng[0][1]; IRange r2 = rng[0][2]; IRange r3 = rng[0][3]; //決策變量 INumVar[][]deVar=new INumVar[1][]; deVar[0]=new INumVar[4];//4個決策變量 deVar[0][0] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And( cplexModel.Column(r1, 1.0).And( cplexModel.Column(r2, 20.0))), 0.0, double.MaxValue, "x11");//最后一行為取值和名稱 deVar[0][1] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And( cplexModel.Column(r0, 1.0).And( cplexModel.Column(r2, 40.0))), 0.0, double.MaxValue, "x12"); deVar[0][2] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And( cplexModel.Column(r1, 1.0).And( cplexModel.Column(r3, 10.0))), 0.0, double.MaxValue, "x21"); deVar[0][3] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And( cplexModel.Column(r0, 1.0).And( cplexModel.Column(r3, 30.0))), 0.0, double.MaxValue, "x22");
求解模型並展示
if (cplexModel.Solve()) { int nvars = cplexModel.GetValues(deVar[0]).Length; for (int j = 0; j < nvars; ++j) { cplexModel.Output().WriteLine("Variable " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] ); } }
導出模型
cplexModel.ExportModel("lpex1.lp");
文件在“你的項目\bin\debug”顯示如下圖:
完整代碼和求解結果
using ILOG.Concert; using ILOG.CPLEX; using System; public class LPex1 { public static void Main(string[] args) { try { //實例化一個空模型 Cplex cplexModel = new Cplex(); //生成決策變量並賦值 INumVar[][] deVar = new INumVar[1][]; double[] lb = { 0.0, 0.0, 0.0, 0.0 }; double[] ub = { double.MaxValue, double.MaxValue, double.MaxValue, double.MaxValue }; string[] deVarName = { "x11", "x12", "x21", "x22" }; INumVar[] x = cplexModel.NumVarArray(4, lb, ub, deVarName); deVar[0] = x; //目標函數 double[] objCoef = { 50.0, 70.0, 50.0, 70.0 };//目標函數系數(object coefficient) cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef)); //約束條件 IRange[][] rng = new IRange[1][]; rng[0] = new IRange[4]; rng[0][0] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[3]), cplexModel.Prod(1.0, x[1])), 112, "c1"); rng[0][1] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[0]), cplexModel.Prod(1.0, x[2])), 104.0, "c2"); rng[0][2] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(20.0, x[0]), cplexModel.Prod(40.0, x[1])), 3200.0, "c3"); rng[0][3] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(10.0, x[2]), cplexModel.Prod(30.0, x[3])), 2000.0, "c4"); cplexModel.ExportModel("lpex1.lp"); if (cplexModel.Solve()) { int nvars = cplexModel.GetValues(deVar[0]).Length; for (int j = 0; j < nvars; ++j) { cplexModel.Output().WriteLine("Variable " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] ); } } cplexModel.End(); } catch (ILOG.Concert.Exception e) { System.Console.WriteLine("Concert exception '" + e + "' caught"); } Console.ReadKey(); } }
決策變量較多時,請使用循環。本文重在入門和對cplex庫中一些概念的理解。