描述
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix = [ [1,2,3], [4,5,6], [7,8,9] ], rotate the input matrix in-place such that it becomes: [ [7,4,1], [8,5,2], [9,6,3] ]
Example 2:
Given input matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], rotate the input matrix in-place such that it becomes: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
思路:移位法
將矩陣的的邊框連線
如果矩陣的寬度和高度都為n,那么一共有n/2個連線框,這些連線框位移形成旋轉矩陣,如下圖
按順時針位移,依次遍歷連線上的點就行。
這里為了不增加額外的空間消耗,不創建新的矩陣,我們用一個temp變量,存放臨時的待替換元素,如果要順時針替換,則需要兩個臨時變量還要不斷更新,所以我們采用逆時針旋轉替換,這樣只需要在開始的時候加入一個temp變量即可。
然后遍歷的時候令i為旋轉的圈數,j為直線上遍歷的序號。使得j=i,j增大到n-1-i,然后根據四個點的序號關聯完成轉移。
class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); int count = n/2,temp = 0; for(int i = 0;i < count;++i){ for(int j = i;j<n-i-1;++j){ temp = matrix[i][j]; matrix[i][j] = matrix[n - j - 1][i]; matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1]; matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1]; matrix[j][n - i - 1] = temp; } } } };