給出下面的一個基類框架:
class Point_1D
{ protected:
float x;//1D 點的x坐標
public:
Point_1D(float p = 0.0);
float distance( );//計算當前點到原點的距離
}
以Point_1D為基類建立一個派生類Point_2D,增加一個保護數據成員:
float y;//2D平面上點的y坐標
以Point_2D為直接基類再建立一個派生類Point_3D,增加一個保護數據成員:
float z;//3D立體空間中點的z坐標
生成上述類並編寫主函數,根據輸入的點的基本信息,建立點對象,並能計算該點到原點的距離。
輸入格式: 測試輸入包含若干測試用例,每個測試用例占一行(點的類型(1表示1D點,2表示2D點,3表示3D點) 第一個點坐標信息(與點的類型相關) 第二個點坐標信息(與點的類型相關))。當讀入0時輸入結束,相應的結果不要輸出。
輸入樣例:
1 -1
2 3 4
3 1 2 2
0
輸出樣例:
Distance from Point -1 to original point is 1
Distance from Point(3,4) to original point is 5
Distance from Point(1,2,2) to original point is 3
實現如下:
#include<iostream>
#include<math.h>
using namespace std;
class Point_1D
{
protected:
float x;//1D 點的x坐標
public:
//Point_1D(float p = 0.0);
void set_1D(){cin>>x;}
Point_1D(float a=0){x=a;}
float distance(const Point_1D & p2);
};
class Point_2D:public Point_1D
{
protected:
float y;//2D平面上點的y坐標
public:
Point_2D(float a=0,float b=0){x=a;y=b;}
void set_2D(){set_1D();cin>>y;}
float distance(const Point_2D & p2);
};
class Point_3D:public Point_2D
{
protected:
float z;//3D立體空間中點的z坐標
public:
Point_3D(float a=0,float b=0,float c=0){x=a;y=b;z=c;}
void set_3D(){set_2D();cin>>z;}
float distance(const Point_3D & p2);
};
int main()
{
int type;
Point_1D a1,a2;
Point_2D b1,b2;
Point_3D c1,c2;
cin>>type;
while(type)
{
switch(type)
{
case 1:a1.set_1D();a1.distance(a2);break;
case 2:b1.set_2D();b1.distance(b2);break;
case 3:c1.set_3D();c1.distance(c2);break;
}
cin>>type;
}
return 0;
}
float Point_1D::distance(const Point_1D & p2)
{
float a;
a=fabs(x-p2.x);
cout<<"Distance from Point "<<x<<" to original point is "<<a<<endl;
return a;
}
float Point_2D::distance(const Point_2D & p2)
{
float a;
a=sqrt((x-p2.x)*(x-p2.x)+(y-p2.y)*(y-p2.y));
cout<<"Distance from Point("<<x<<","<<y<<") to original point is "<<a<<endl;
return a;
}
float Point_3D::distance(const Point_3D & p2)
{
float a;
a=sqrt((x-p2.x)*(x-p2.x)+(y-p2.y)*(y-p2.y)+(z-p2.z)*(z-p2.z));
cout<<"Distance from Point("<<x<<","<<y<<","<<z<<") to original point is "<<a<<endl;
return a;
}