其中作者:桂。
時間:2017-10-16 07:51:40
鏈接:http://www.cnblogs.com/xingshansi/p/7675380.html
前言
主要記錄二維測向中,分別利用兩個一維陣聯合解算的思路。
一、AP算法思想
信號模型:
對應相關矩陣
假設噪聲為遍歷、平穩、空時不相關的零均值高斯隨機過程,源信號為未知確定信號:
高維正態分布表達式:
由概率論可知,幾個獨立同高斯分布隨機過程的概率密度函數為:
取對數:
觀測向量為X(t),對其求偏導:
得到信號s的極大似然估計:
再針對方差求偏導:
將s的似然估計結果代入原表達式中,方差結果sigma也代入,可以得到:
其中
而A+是Moore-Penrose逆:
記投影矩陣以及補空間的投影矩陣:
綜合上式,可以得出角度最大似然估計:
等價於:
該算法基於統計參數估計的思路,不涉及SVD分解或者相關矩陣求逆,因此對於相干信號理論上仍然適用,從理論的結構來看,由於投影矩陣涉及求逆,且有迭代過程,因此耗費資源過大。
通常該算法可與其他算法結合使用,用於剔除雜峰,主要代碼實現:
function [phi_last,theta_last] = MuCalL_2D(x,srcNum,Array,resolution,lambda_c) %L陣 sub1 = [1:6]; sub2 = [1,7:11]; J = fliplr(eye(length(sub1))); x1 = x(sub1,:); x2 = conj(J*x(sub2,:)); [phi,theta,spec1] = MuCalL_647_1D(x1,srcNum,Array(sub1,:),resolution,lambda_c); [phi2,alpha,spec2] = MuCalL_647_1D(x2,srcNum,Array(sub1,:),resolution,lambda_c); % [val1,phi_pos] = findpeaks(spec1,'minpeakdistance',3); [val,num_phi] = sort(val1,'descend'); [val2,theta_pos] = findpeaks(spec2,'minpeakdistance',3); [val,num_theta] = sort(val2,'descend'); phi_est = phi(phi_pos(num_phi(1:srcNum))); theta_est = alpha(theta_pos(num_theta(1:srcNum))); phi_est = phi_est; %篩選 snap = size(x,2); R_all = x*x'/snap; para_all = perms([1:srcNum]); theta_all = kron(theta_est,ones(1,size(para_all,1))); theta_all([2,4]) = theta_all([4,2]); phi_all = repmat(phi_est,1,size(para_all,1)); theta_all = asin(sin(theta_all/180*pi)./cos(phi_all/180*pi))/pi*180; im = sqrt(-1); Dd = []; for kkk = 1:size(theta_all,2)/srcNum nshift = ((kkk-1)*srcNum+1):((kkk)*srcNum); theta_cache = theta_all(nshift)/180*pi; phi_cache = phi_all(nshift)/180*pi; Az = []; for j = 1:srcNum r = [sin(phi_cache(j)) cos(phi_cache(j))*sin(theta_cache(j)) cos(phi_cache(j))*cos(theta_cache(j))]; r_rep = repmat(r,size(x,1),1); dis = sum(r_rep.*Array,2); am = exp(-im*2*pi*dis/lambda_c); Az = [Az,am]; end Pb3 = Az*pinv(Az'*Az)*Az'; Dd(kkk) = abs(trace(Pb3*R_all)); end [valDd,indexDd]=max(Dd); n_pos = ((indexDd-1)*srcNum+1):((indexDd)*srcNum); [phi_last,sort_pos] = sort(phi_all(n_pos),'ascend'); theta_last = theta_all(n_pos); theta_last = theta_last(sort_pos);
二、其他思路(對相干信號適應性較差)
該方法針對ULA(均勻線陣),1)未考慮非均勻線陣NULA情形;2)未考慮相干source情形。
個人分析,該算法可改進(未進一步仿真驗證): 對於相干且NULA情形,1)各自平滑,X、Z軸相對位置無嚴格限制,但X、Z需結構一致;2)求解Rzx,並取對角元素diag(Rzx),結合兩個一維測向得出導向矢量:max |a(theta)conj(a(phi)).*diag(Rzx)|。
三、聯合解算論文
聯立解算的思路:
主要代碼實現:
Ax = A(sub1,:); Ay = A(sub2,:); %利用T矩陣解算 y_sig = x2; x_sig = x1; Ryy = y_sig*y_sig'/snapshot; Rs_hat = pinv(Ay'*Ay)*Ay'*Ryy*pinv(Ay*Ay')*Ay;%eq.5 Rxy = x_sig*y_sig'/snapshot; Ay_pieH = pinv(Ay*Ay')*Ay; Rs_pie = pinv(Ax'*Ax)*Ax'*Rxy*Ay_pieH;%eq.9 %構造T矩陣解算 perm = perms([1:srcNum]); J = zeros(1,size(perm,1)); for i = 1:size(perm,1) T = zeros(srcNum); T(perm(i,:)+[0:srcNum-1]*srcNum) = 1; J(i) = sum(sum(abs(Rs_pie-T*Rs_hat).^2)); end [minVal,minPos] = min(J); phi_est = phi_est(perm(minPos,:)); theta_all = theta_est; %求解 phi_last = phi_est; theta_last = asin(sin(theta_all/180*pi)./cos(phi_last/180*pi))/pi*180;
當個數不匹配的時候可參考(個人覺得直接拓展效果也可以,就是配對之前添加一個預處理):