題目大意很簡單,和普通的石子合並過程沒有區別,只是花費變成了一個多項式,若連續的任意個石子權值和為x,那么代價變為F(x) = sigma(a[i] * x^i),求將n堆石子合並為一隊的最小花費。
對於暴力的做法,復雜度是O(n^3)的,所以要優化
我們知道當a, b, c, d(a <= b < c <= d)當有cost[a][c] + cost[b][d] <= cost[a][d] + cost[b][c] 時,我們稱其滿足四邊形不等式,設p[i][j]表示當區間[i, j]取最優決策時所選擇的下標,這時可以證明有p[i][j - 1] <= p[i][j] <= p[i + 1][j](花了我好長時間終於證明了),沒事了可以證明下看看,也可以記住這個結論。
這時當按區間dp時,計算區間[i, j]的最優解,只要枚舉[p[i][j - 1], p[i + 1][j]]即可,由於數組p取值為[1, n]且是單調的,所以枚舉的總復雜度為O(n),最后加上區間枚舉的復雜度,總復雜度為O(n^2)
所以對於一般性的題目,需要證明的只有dp量是不是滿足四邊形不等式的,對於這道題就是要證明:
設sum(a, b) = x, sum(b, c) = z, sum(c, d) = y;
有 F(x + z) + F(y + z) <= F(z) + F(x + y + z),即證明:
sigma(a[i] * ( (x + z)^i + (y + z)^i - z^i - (x+y+z)^i )) <= 0,轉化為證明:
(x + z) ^ n + (y + z) ^ n - z ^ n - (x + y + z) ^ n <= 0恆成立。
很明顯這個不等式可以利用數學歸納法加以簡單的證明。
1 #include <map> 2 #include <set> 3 #include <stack> 4 #include <queue> 5 #include <cmath> 6 #include <ctime> 7 #include <vector> 8 #include <cstdio> 9 #include <cctype> 10 #include <cstring> 11 #include <cstdlib> 12 #include <iostream> 13 #include <algorithm> 14 using namespace std; 15 #define INF 0x3f3f3f3f 16 #define inf (-((LL)1<<40)) 17 #define lson k<<1, L, (L + R)>>1 18 #define rson k<<1|1, ((L + R)>>1) + 1, R 19 #define mem0(a) memset(a,0,sizeof(a)) 20 #define mem1(a) memset(a,-1,sizeof(a)) 21 #define mem(a, b) memset(a, b, sizeof(a)) 22 #define FIN freopen("in.txt", "r", stdin) 23 #define FOUT freopen("out.txt", "w", stdout) 24 #define rep(i, a, b) for(int i = a; i <= b; i ++) 25 26 template<class T> T CMP_MIN(T a, T b) { return a < b; } 27 template<class T> T CMP_MAX(T a, T b) { return a > b; } 28 template<class T> T MAX(T a, T b) { return a > b ? a : b; } 29 template<class T> T MIN(T a, T b) { return a < b ? a : b; } 30 template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; } 31 template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } 32 33 //typedef __int64 LL; 34 typedef long long LL; 35 const int MAXN = 51000; 36 const int MAXM = 110000; 37 const double eps = 1e-4; 38 //LL MOD = 987654321; 39 40 int T, n, m, s[1100], a[10]; 41 LL p[1100][1100], dp[1100][1100]; 42 43 LL fun(int x) { 44 LL ans = 0, p = 1; 45 rep (i, 0, m) { 46 ans += a[i] * p; 47 p *= x; 48 } 49 return ans; 50 } 51 52 int main() 53 { 54 //FIN; 55 while(~scanf("%d", &T)) while(T--) { 56 scanf("%d", &n); 57 rep (i, 1, n) scanf("%d", s + i), s[i] += s[i - 1]; 58 scanf("%d", &m); 59 rep (i, 0, m) scanf("%d", a + i); 60 mem0(dp); mem0(p); 61 rep (len, 1, n) { 62 rep (i, 1, n - len + 1) { 63 int j = i + len - 1; 64 LL cost = fun(s[j] - s[i - 1]); 65 if(len <= 1) { dp[i][j] = 0; p[i][j] = i; } 66 else rep (k, p[i][j - 1], p[i + 1][j]) { 67 if(dp[i][k] + dp[k+1][j] + cost < dp[i][j] || dp[i][j] == 0) { 68 p[i][j] = k; 69 dp[i][j] = dp[i][k] + dp[k+1][j] + cost; 70 } 71 } 72 } 73 } 74 cout << dp[1][n] << endl; 75 } 76 return 0; 77 }