在平面極坐標系中,如果極徑ρ隨極角θ的增加而成比例增加(或減少),這樣的動點所形成的軌跡叫做螺線。
最常見的螺線有阿基米德螺線、對數螺線、雙曲螺線等。
阿基米德螺線
vertices = 1000 t = from 0 to (20*PI) a = 0.05 r = a*t x = r*sin(t) y = r*cos(t)

等角螺線
vertices = 12000 t = from (-20*PI) to (20*PI) b = 0.05 r = pow(E, b*t) x = r*sin(t) y = r*cos(t)

對數螺線
vertices = 1000 a = 1.0 b = 1.1 t = from 0 to (15*PI) p = a*pow(b,t) x = p*sin(t) y = p*cos(t)

費馬螺線
vertices = 12000 r = from -10 to 10 t = r*r x = r*sin(t) y = r*cos(t)

連鎖螺線
vertices = 12000 r = from -10 to 10 k = 1.0 t = k/(r*r) t = limit(t, -10*PI, 10*PI) x = r*sin(t) y = r*cos(t)

雙曲螺線
#極徑與極角成反比的點的軌跡稱為雙曲螺線。 vertices = 10000 a = 16.0 t = from 0.5 to (200*PI) x = a*cos(t)/t y = a*sin(t)/t

圓周漸伸線,貌似它與阿基米德螺線是相同的.
vertices = 1000 r = 1.0 t = from 0 to (20*PI) x = r*[cos(t) + t*sin(t)] y = r*[sin(t) - t*cos(t)]

