數學圖形之螺旋曲面


這一節中將提供各種螺旋曲面的生成方法.

相關軟件參見:數學圖形可視化工具,使用自己定義語法的腳本代碼生成數學圖形.

我之前寫過生成圓環的C++程序,代碼發布在螺旋面(Spire)圖形的生成算法

 

(1)正螺旋面

      正螺旋面就是讓一條直線l的初始位置與x軸重合,然后讓直線l一邊繞z軸作勻速轉動,一邊沿z軸方向作勻速運動,則直線在這兩種運動的合成下掃出的曲面就是正螺旋面。

      顯然正螺旋面可以看做是由直線形成的,即它是一個直紋面。

為什么叫正,難道還有反嗎?.看其公式,就是將圓向上拉了拉又多轉了幾圈.

vertices = D1:32 D2:360

u = from 0 to 3 D1
v = from 0 to (8*PI) D2

x = u*cos(v)
y = v*0.5
z = u*sin(v)

(2)正螺旋面隨機(helicoiddroit)

加上隨機參數的正螺旋面,並向外拉伸了下.

vertices = D1:32 D2:360

u = from 0 to 3 D1
v = from 0 to (8*PI) D2

a = rand2(0.1, 1)
b = rand2(1, 5)

x = (b + u)*cos(v)
y = v*a
z = (b + u)*sin(v)

(3)阿基米德螺旋面

看其公式,阿基米德螺旋面就是正螺旋面變化了下高度參數

#http://202.113.29.3/nankaisource/graphics/differential%20geometry/t060307.htm
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = D1:100 D2:360

u = from 0 to (2) D1
v = from 0 to (8*PI) D2

x = -u/SQRT2*cos(v)
y = u/SQRT2 + v/PI/2
z = -u/SQRT2*sin(v)

(4)sincos螺旋面

vertices = D1:720 D2:72
p = from 0 to (8*PI) D1
q = from 0 to (PI) D2

a = 5
h = rand2(0.5, 5)

x = a/2*(cos(p) + cos(q))
y = h*(p + q)/2
z = a/2*(sin(p) + sin(q))

u = p
v = q*3

(5)漸開螺旋面

#http://202.113.29.3/nankaisource/graphics/differential%20geometry/t060306.htm
#http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/

vertices = D1:100 D2:360

u = from 0 to (4*PI) D1
v = from 0 to (8*PI) D2

x = 2*[cos(u+v) + u*sin(u+v)]
y = v
z = 2*[sin(u+v) - u*cos(u+v)]

(6)雙曲正弦螺旋面

vertices = D1:360 D2:72
u = from 0 to (5*PI) D1
v = from 0 to (4*PI) D2

a = 5
h = rand2(5, 20)

x = a*sh(u - v)*cos(u+v)
y = h*(u + v)
z = a*sh(u - v)*sin(u+v)

w = 50
x = limit(x, -w, w)
z = limit(z, -w, w)

由於sh函數會出現無窮大的情況,所以做了個范圍限制,不過這邊界太四方了有點難看,修改下:

vertices = D1:360 D2:72
u = from 0 to (5*PI) D1
v = from 0 to (4*PI) D2

a = 5
h = rand2(5, 20)

x = a*sh(u - v)*cos(u+v)
y = h*(u + v)
z = a*sh(u - v)*sin(u+v)

w = sqrt(x*x + z*z)

x = if(w > 50, x*50/w, x)
z = if(w > 50, z*50/w, z)

(7)Developable helicoid

#http://www.mathcurve.com/surfaces/helicoiddeveloppable/helicoiddeveloppable.shtml

vertices = dimension1:1000 dimension2:72

u = from 0 to (18*PI) dimension1
v = from 0 to (2*PI) dimension2

a = rand2(1, 10)
b = rand2(1, 10)

x = a*(cos(u) - v*sin(u))
z = a*(sin(u) + v*cos(u))
y = b*(u + v)

(8)Helicoid_wiki

從維基上找的一種螺旋面:

#http://en.wikipedia.org/wiki/Catenoid

vertices = D1:400 D2:100

u = from (0) to (PI*16) D1
v = from (0) to (4) D2

t = rand2(-PI, PI)
s = sin(t)
c = cos(t)

x = c*sinh(v)*sin(u) + s*cosh(v)*cos(u)
z = u*c + v*s
y = -c*sinh(v)*cos(u) + s*cosh(v)*sin(u)

(9)helicoidcercle

#http://www.mathcurve.com/surfaces/helicoidcercle/helicoidcercle.shtml

vertices = D1:72 D2:1200

u = from 0 to (PI) D1
v = from 0 to (36*PI) D2

a = 1
h = 1/(2*PI)

x = a*cos(u)*cos(v)
z = a*cos(u)*sin(v)
y = b*sin(u) + h*v

 

再回到第一個腳本,正螺旋面中它的生成方式是:

"然后讓直線l一邊繞z軸作勻速轉動,一邊沿z軸方向作勻速運動"

如果用一條曲線一邊繞z軸作勻速轉動,一邊沿z軸方向作勻速運動,那會生成何種曲面呢?

這樣的話,每一種曲線都可以生成一種螺旋面.

這里再提供兩個例子:

 (10)冪螺旋面

vertices = D1:32 D2:360

u = from 0 to 2 D1
v = from 0 to (8*PI) D2

a = rand2(-2, 2)
w = pow(u, a)

x = u*cos(v)
y = v*0.5 + w
z = u*sin(v)

(11)指螺旋面

vertices = D1:32 D2:360

u = from 0 to 2 D1
v = from 0 to (8*PI) D2

a = rand2(0, 2)
w = pow(a, u)

x = u*cos(v)
y = v*0.5 + w
z = u*sin(v)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM