最近可能要用三維點雲實現一個三維場景重建的功能,從經典的ICP算法開始,啃了一些文檔,對其原理也是一知半解。
大致參考了這份文檔之后,照流程用MATLAB實現了一個簡單的ICP算法,首先是發現這份文檔中一個明顯的錯誤,
公式6
求兩個點集的協方差,其中(Pi-p)和(Qi-p')分別求兩個點集的各點與重心的差,都是(3*1)向量,這是不能相乘的,根據后文推斷,此物的結果應為(3*3)矩陣,所以我大(zuo)膽(si)的改為(Pi-p)' * (Qi-p'),做一次嘗試。
Matlab代碼如下:
%%% ICP迭代最近點算法 function [sourcePoint,aimPoint,distance] = ICPiterator( sourcePoint , targetPoint ) %%% 獲得匹配點集,重心 aimPoint = getAimPoint(sourcePoint,targetPoint); sourcePointCentre = getCentre(sourcePoint); aimPointCentre = getCentre(aimPoint); %%% 平移矩陣 T = getTranslation(aimPointCentre,sourcePointCentre); %%% 中心化 midSourcePoint = centreTransform(sourcePoint, sourcePointCentre); midAimPoint = centreTransform(aimPoint, aimPointCentre); %%%旋轉四元數 quaternion = getRevolveQuaternion(midSourcePoint,midAimPoint); %%%旋轉矩陣 revolveMatrix = getRevolveMatrix(quaternion); %%%變換 sourcePoint = midSourcePoint * revolveMatrix; sourcePoint = counterCentreTransform(sourcePoint,sourcePointCentre); range = length(sourcePoint); for i = 1:1:range sourcePoint(i,:) = sourcePoint(i,:) + T; end %%%閾值判定,歐拉距離和 distance = getDistance(sourcePoint,aimPoint); end %%% 點對搜索匹配,得到匹配點集 function [aimPoint] = getAimPoint( sourcePoint , targetPoint ) rangeS = length(sourcePoint ); rangeT = length(targetPoint); aimPoint = zeros(rangeS,3); for i = 1:1:rangeS minDistance = getDistance(sourcePoint(i,:),targetPoint(1,:)); aimPoint(i,:) = targetPoint(1,:); for j = 1:1:rangeT distance = getDistance(sourcePoint(i,:),targetPoint(j,:)); if distance < minDistance minDistance = distance; aimPoint(i,:) = targetPoint(j,:); end end end end %%%旋轉四元數 function [quaternion] = getRevolveQuaternion( sourcePoint , targetPoint ) %%% 協方差 pp = sourcePoint' * targetPoint; range = size(sourcePoint,1); pp = pp / range; %%% 反對稱矩陣 dissymmetryMatrix = pp - pp' ; %%% 列向量delta delta = [dissymmetryMatrix(2,3) ; dissymmetryMatrix(3,1) ; dissymmetryMatrix(1,2)]; %%%對稱矩陣Q Q = [ trace(pp) delta' ; delta pp + pp' - trace(pp)*eye(3) ]; %%%最大特征值,對應特征向量即為旋轉四元數 maxEigenvalues = max(eig(Q)); quaternion = null(Q - maxEigenvalues*eye(length(Q))); end %%% 旋轉矩陣 function [revolveMatrix] = getRevolveMatrix(quaternion) revolveMatrix = [ quaternion(1,1)^2 + quaternion(2,1)^2 - quaternion(3,1)^2 - quaternion(4,1)^2 2 * (quaternion(2,1)*quaternion(3,1) - quaternion(1,1)*quaternion(4,1)) 2 * (quaternion(2,1)*quaternion(4,1) + quaternion(1,1)*quaternion(3,1)); 2 * (quaternion(2,1)*quaternion(3,1) + quaternion(1,1)*quaternion(4,1)) quaternion(1,1)^2 - quaternion(2,1)^2 + quaternion(3,1)^2 - quaternion(4,1)^2 2 * (quaternion(3,1)*quaternion(4,1) - quaternion(1,1)*quaternion(2,1)); 2 * (quaternion(2,1)*quaternion(4,1) - quaternion(1,1)*quaternion(3,1)) 2 * (quaternion(3,1)*quaternion(4,1) + quaternion(1,1)*quaternion(2,1)) quaternion(1,1)^2 - quaternion(2,1)^2 - quaternion(3,1)^2 + quaternion(4,1)^2 ]; end %%% 點集重心 function [centre] = getCentre( point ) range = length(point); centre = sum(point)/range; end %%% 獲取平移矩陣 function [T] = getTranslation( aimPointCentre , sourcePointCentre ) T = aimPointCentre - sourcePointCentre; end %%% 點集中心化 function [point] = centreTransform(point,centre) range = size(point,1); for i = 1:1:range point(i,:) = point(i,:) - centre; end end function [point] = counterCentreTransform(point,centre) range = size(point,1); for i = 1:1:range point(i,:) = point(i,:) + centre; end end %%% 計算兩點距離的平方,即歐拉距離和 function [distance] = getDistance(point1,point2) distance = (point1(1,1) - point2(1,1))^2 + (point1(1,2) - point2(1,2))^2 + (point1(1,3) - point2(1,3))^2; end
為了看到迭代過程,這段代碼每次只是進行一次迭代,但是實際情況下需要不斷迭代,直到兩點集的方差收斂,達到擬合要求。
用隨機數生成了一個含一百個點的點集A,並對A進行一次隨機的空間變化,得到B,這樣A,B是完全可以擬合的兩個點集;
點集A:
點集B:
用A,B來驗證算法能不能實現點集的擬合。
試驗了幾次之后,發現無法收斂:
問題應該出在旋轉四元數和旋轉矩陣求解上,這塊是一直沒能理解透徹的部分。