求數組中最長遞增子序列的長度
什么是最長遞增子序列呢?
問題描述如下:
設L=<a1,a2,…,an>是n個不同的實數的序列,L的遞增子序列是這樣一個子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。
如:在序列1,-1,2,-3,4,-5,6,-7中,其最長的遞增子序列為1,2,4,6。其長度為4。
對於這個問題有以下幾種解決思路:
1、把a1,a2,...,an排序,假設得到a'1,a'2,...,a'n,然后求a的a'的最長公共子串,這樣總的時間復雜度為o(nlg(n))+o(n^2)=o(n^2);
2、動態規划的思路:
另設一輔助數組b,定義b[n]表示以a[n]結尾的最長遞增子序列的長度,則狀態轉移方程如下:b[k]=max(max(b[j]|a[j]<a[k],j<k)+1,1);
這個狀態轉移方程解釋如下:在a[k]前面找到滿足a[j]<a[k]的最大b[j],然后把a[k]接在它的后面,可得到a[k]的最長遞增子序列的長度,或者a[k]前面沒有比它小的a[j],那么這時a[k]自成一序列,長度為1.最后整個數列的最長遞增子序列即為max(b[k] | 0<=k<=n-1);
實現代碼如下:
#include <iostream> using namespace std; int main() { int i,j,n,a[100],b[100],max; while(cin>>n) { for(i=0;i<n;i++) cin>>a[i]; b[0]=1;//初始化,以a[0]結尾的最長遞增子序列長度為1 for(i=1;i<n;i++) { b[i]=1;//b[i]最小值為1 for(j=0;j<i;j++) if(a[i]>a[j]&&b[j]+1>b[i]) b[i]=b[j]+1; } for(max=i=0;i<n;i++)//求出整個數列的最長遞增子序列的長度 if(b[i]>max) max=b[i]; cout<<max<<endl; } return 0; }
顯然,這種方法的時間復雜度仍為o(n^2);
3、對第二種思路的改進:
第二種思路在狀態轉移時的復雜度為o(n),即在找a[k]前面滿足a[j]<a[k]的最大b[j]時采用的是順序查找的方法,復雜度為o(n).
設想如果能把順序查找改為折半查找,則狀態轉移時的復雜度為o(lg(n)),這個問題的總的復雜度就可以降到nlg(n).